湖南工業(yè)大學(xué)科技學(xué)院《版式設(shè)計》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁
湖南工業(yè)大學(xué)科技學(xué)院《版式設(shè)計》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁
湖南工業(yè)大學(xué)科技學(xué)院《版式設(shè)計》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁
湖南工業(yè)大學(xué)科技學(xué)院《版式設(shè)計》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁
湖南工業(yè)大學(xué)科技學(xué)院《版式設(shè)計》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準考證號學(xué)校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁湖南工業(yè)大學(xué)科技學(xué)院《版式設(shè)計》

2022-2023學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在圖像分類任務(wù)中,深度學(xué)習(xí)模型取得了顯著的成果。假設(shè)要對一組包含不同動物的圖像進行分類,以下關(guān)于圖像分類模型的描述,正確的是:()A.模型的層數(shù)越多,分類準確率一定越高B.數(shù)據(jù)增強技術(shù),如旋轉(zhuǎn)、裁剪等,對模型的性能提升沒有幫助C.結(jié)合多種特征提取方法和分類器,可以提高圖像分類的準確性和魯棒性D.圖像分類模型不需要考慮圖像的空間信息,只關(guān)注像素值的統(tǒng)計特征2、計算機視覺在工業(yè)檢測中的應(yīng)用可以提高產(chǎn)品質(zhì)量和生產(chǎn)效率。假設(shè)要檢測生產(chǎn)線上的零件是否存在缺陷,以下關(guān)于工業(yè)檢測中的計算機視覺應(yīng)用的描述,哪一項是不正確的?()A.可以使用機器視覺系統(tǒng)對零件進行實時檢測,快速發(fā)現(xiàn)缺陷B.深度學(xué)習(xí)模型能夠自動學(xué)習(xí)正常零件和缺陷零件的特征差異,實現(xiàn)準確的缺陷檢測C.工業(yè)檢測中的計算機視覺系統(tǒng)需要具備高度的準確性和穩(wěn)定性,能夠適應(yīng)不同的生產(chǎn)環(huán)境D.計算機視覺在工業(yè)檢測中只能檢測外觀缺陷,對于零件的內(nèi)部結(jié)構(gòu)和性能無法進行評估3、在計算機視覺中,圖像分類是一項基礎(chǔ)任務(wù)。假設(shè)我們有一組包含各種動物的圖像數(shù)據(jù)集,需要訓(xùn)練一個模型來準確區(qū)分不同的動物類別。在選擇圖像分類模型時,以下哪種模型架構(gòu)通常在處理大規(guī)模圖像數(shù)據(jù)集時表現(xiàn)出色?()A.傳統(tǒng)的機器學(xué)習(xí)算法,如支持向量機(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.深度卷積神經(jīng)網(wǎng)絡(luò),如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)4、在計算機視覺的車牌識別任務(wù)中,需要從車輛圖像中準確提取車牌號碼。假設(shè)車牌存在傾斜、變形和光照不均等問題。以下哪種車牌識別方法在應(yīng)對這些挑戰(zhàn)時表現(xiàn)更為出色?()A.基于字符分割的車牌識別B.基于模板匹配的車牌識別C.基于深度學(xué)習(xí)的車牌識別D.基于特征提取的車牌識別5、在計算機視覺的圖像超分辨率重建中,假設(shè)我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細節(jié)和紋理。以下哪種深度學(xué)習(xí)架構(gòu)可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)C.生成對抗網(wǎng)絡(luò)(GAN)D.自動編碼器(Autoencoder)6、在計算機視覺的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不變特征變換)特征是一種經(jīng)典的方法。假設(shè)我們要對一組包含不同視角和縮放比例的物體圖像進行匹配,SIFT特征的哪個特性使其在這種情況下表現(xiàn)出色?()A.對旋轉(zhuǎn)和尺度變化具有不變性B.計算速度快,效率高C.特征維度低,易于存儲和處理D.對光照變化不敏感7、在計算機視覺的視頻監(jiān)控系統(tǒng)中,異常事件檢測是重要功能之一。假設(shè)要在一個倉庫的監(jiān)控視頻中檢測出異常的人員活動或物品移動。以下哪種異常事件檢測方法在處理這種大規(guī)模視頻數(shù)據(jù)時能夠更有效地發(fā)現(xiàn)異常?()A.基于規(guī)則的檢測B.基于統(tǒng)計模型的檢測C.基于深度學(xué)習(xí)的檢測D.基于人工觀察的檢測8、計算機視覺中的圖像超分辨率技術(shù)用于提高圖像的分辨率。假設(shè)要將一張低分辨率的圖像恢復(fù)成高分辨率圖像,以下關(guān)于圖像超分辨率方法的描述,正確的是:()A.基于插值的圖像超分辨率方法能夠生成清晰逼真的高分辨率圖像B.深度學(xué)習(xí)中的生成對抗網(wǎng)絡(luò)(GAN)在圖像超分辨率任務(wù)中無法發(fā)揮作用C.圖像超分辨率的效果不受原始低分辨率圖像的質(zhì)量和內(nèi)容的限制D.結(jié)合先驗知識和深度學(xué)習(xí)的方法可以改善圖像超分辨率的效果9、計算機視覺中的動作識別旨在識別視頻中的人體動作。假設(shè)要對一段監(jiān)控視頻中的人員動作進行分類,以下關(guān)于動作識別方法的描述,正確的是:()A.基于手工特征和傳統(tǒng)分類器的方法能夠處理復(fù)雜的動作變化,準確率高B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)在動作識別中無法捕捉動作的時空特征C.3D卷積神經(jīng)網(wǎng)絡(luò)能夠同時處理空間和時間維度的信息,適用于動作識別任務(wù)D.動作識別系統(tǒng)對視頻的拍攝角度和背景變化不敏感,具有很強的通用性10、計算機視覺中的醫(yī)學(xué)圖像分析中,假設(shè)要對腫瘤進行檢測和分割。以下關(guān)于醫(yī)學(xué)圖像分析方法的描述,正確的是:()A.由于醫(yī)學(xué)圖像的特殊性,傳統(tǒng)的計算機視覺方法無法應(yīng)用于醫(yī)學(xué)圖像分析B.深度學(xué)習(xí)方法在醫(yī)學(xué)圖像分析中能夠準確檢測腫瘤,但對小腫瘤容易漏檢C.多模態(tài)醫(yī)學(xué)圖像融合可以提供更豐富的信息,但融合算法復(fù)雜,效果不穩(wěn)定D.醫(yī)學(xué)圖像分析的結(jié)果不需要經(jīng)過醫(yī)生的審核和確認,可以直接用于診斷11、在計算機視覺的表情識別任務(wù)中,判斷圖像或視頻中人物的表情。假設(shè)要開發(fā)一個用于在線教育的表情識別系統(tǒng),以下關(guān)于表情識別方法的描述,哪一項是不正確的?()A.可以通過分析面部肌肉的運動和特征點的變化來識別表情B.深度學(xué)習(xí)模型能夠?qū)W習(xí)不同表情的模式和特征,實現(xiàn)準確的表情分類C.表情識別系統(tǒng)需要考慮光照、頭部姿態(tài)和遮擋等因素的影響D.表情識別可以準確地識別出所有細微和復(fù)雜的表情,不受個體差異和文化背景的影響12、計算機視覺中的眼底圖像分析對于眼科疾病的診斷具有重要意義。以下關(guān)于眼底圖像分析的描述,不準確的是()A.可以檢測眼底的病變、血管異常和視網(wǎng)膜結(jié)構(gòu)的改變B.深度學(xué)習(xí)方法在眼底圖像分析中能夠自動提取特征和進行疾病分類C.眼底圖像分析需要高質(zhì)量的圖像數(shù)據(jù)和專業(yè)的醫(yī)學(xué)知識標注D.眼底圖像分析技術(shù)已經(jīng)非常成熟,能夠替代醫(yī)生的診斷13、當進行圖像的去霧處理時,假設(shè)要去除圖像中由于霧氣導(dǎo)致的模糊和低對比度。以下哪種方法可能更有效?()A.基于物理模型的去霧方法,估計大氣光和透射率B.對圖像進行簡單的對比度增強C.不進行去霧處理,保留有霧的效果D.隨機調(diào)整圖像的亮度和飽和度14、計算機視覺中的圖像去霧是一個具有挑戰(zhàn)性的問題。假設(shè)要去除一張有濃霧的風(fēng)景圖像中的霧氣,以下哪種方法可能需要對大氣散射模型有深入的了解?()A.基于深度學(xué)習(xí)的去霧方法B.基于物理模型的去霧方法C.基于圖像增強的去霧方法D.基于濾波的去霧方法15、圖像分類是計算機視覺中的常見任務(wù)之一。對于圖像分類模型的訓(xùn)練,以下說法錯誤的是()A.需要大量有標注的圖像數(shù)據(jù)來學(xué)習(xí)不同類別的特征B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)在圖像分類任務(wù)中表現(xiàn)出色C.模型的訓(xùn)練過程是不斷調(diào)整參數(shù)以最小化預(yù)測誤差的過程D.圖像分類模型一旦訓(xùn)練完成,就無法再對新的類別進行學(xué)習(xí)和分類二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述計算機視覺在電商中的商品推薦和圖像搜索。2、(本題5分)解釋計算機視覺在造紙業(yè)中的質(zhì)量控制。3、(本題5分)說明計算機視覺在人體姿態(tài)估計中的應(yīng)用。4、(本題5分)簡述計算機視覺在水利工程中的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)開發(fā)一個能夠識別不同國家國旗的應(yīng)用。2、(本題5分)運用圖像識別算法,對不同類型的家具圖像進行分類和識別。3、(本題5分)通過圖像分類算法,對不同風(fēng)格的建筑圖像進行分類。4、(本題5分)開發(fā)一個能夠識別不同種類毒蛇的程序。5、(本題5分)基于計算機視覺的智能倉儲管理系統(tǒng),實現(xiàn)貨物的自動識別和定位。四、分析題(本大題共4個小題,共40分)1、(本題10分)觀察某城市馬拉松比賽的賽事標識和沿途宣傳設(shè)計,思考如何通過視覺傳達激發(fā)參賽者的斗志,提升城市

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論