版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆太和二中高三下學期第六次檢測數(shù)學試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.年部分省市將實行“”的新高考模式,即語文、數(shù)學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.2.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個3.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.4.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時,A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?5.已知滿足,則()A. B. C. D.6.已知復數(shù),,則()A. B. C. D.7.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.18.已知,則的大小關(guān)系為()A. B. C. D.9.在四邊形中,,,,,,點在線段的延長線上,且,點在邊所在直線上,則的最大值為()A. B. C. D.10.若,則“”是“的展開式中項的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件11.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機取一點,則該點取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.12.將函數(shù)的圖象沿軸向左平移個單位長度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿足約束條件,則的最大值為__________.14.某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學生的人數(shù)為_____.15.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數(shù)據(jù)的標準差為_______.16.假如某人有壹元、貳元、伍元、拾元、貳拾元、伍拾元、壹佰元的紙幣各兩張,要支付貳佰壹拾玖(219)元的貨款,則有________種不同的支付方式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.18.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區(qū)域用于產(chǎn)品展示,該封閉區(qū)域由以為圓心的半圓及直徑圍成.在此區(qū)域內(nèi)原有一個以為直徑、為圓心的半圓形展示區(qū),該廣告商欲在此基礎(chǔ)上,將其改建成一個凸四邊形的展示區(qū),其中、分別在半圓與半圓的圓弧上,且與半圓相切于點.已知長為40米,設(shè)為.(上述圖形均視作在同一平面內(nèi))(1)記四邊形的周長為,求的表達式;(2)要使改建成的展示區(qū)的面積最大,求的值.19.(12分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個還款月應(yīng)還4900元,最后一個還款月應(yīng)還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經(jīng)濟利益的角度來考慮,小張應(yīng)選擇哪種還款方式.參考數(shù)據(jù):.20.(12分)已知函數(shù).(Ⅰ)若,求曲線在處的切線方程;(Ⅱ)當時,要使恒成立,求實數(shù)的取值范圍.21.(12分)已知函數(shù)和的圖象關(guān)于原點對稱,且.(1)解關(guān)于的不等式;(2)如果對,不等式恒成立,求實數(shù)的取值范圍.22.(10分)在平面直角坐標系中,已知橢圓的短軸長為,直線與橢圓相交于兩點,線段的中點為.當與連線的斜率為時,直線的傾斜角為(1)求橢圓的標準方程;(2)若是以為直徑的圓上的任意一點,求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.2、C【解析】
求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關(guān)鍵是對集合元素的認識,本題中集合都是曲線上的點集.3、B【解析】
直線的傾斜角為,易得.設(shè)雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.4、B【解析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點:交集及其運算.5、A【解析】
利用兩角和與差的余弦公式展開計算可得結(jié)果.【詳解】,.故選:A.【點睛】本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.6、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數(shù)問題是高考數(shù)學中的常考問題,屬于得分題,主要考查的方面有:復數(shù)的分類、復數(shù)的幾何意義、復數(shù)的模、共軛復數(shù)以及復數(shù)的乘除運算,在運算時注意符號的正、負問題.7、B【解析】
根據(jù)分段函數(shù)表達式,先求得的值,然后結(jié)合的奇偶性,求得的值.【詳解】因為函數(shù)是奇函數(shù),所以,.故選:B【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結(jié)合思想.意在考查學生的運算能力,分析問題、解決問題的能力.8、A【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對數(shù)函數(shù)的單調(diào)性,將與對比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.【點睛】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對比,屬于基礎(chǔ)題..9、A【解析】
依題意,如圖以為坐標原點建立平面直角坐標系,表示出點的坐標,根據(jù)求出的坐標,求出邊所在直線的方程,設(shè),利用坐標表示,根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】解:依題意,如圖以為坐標原點建立平面直角坐標系,由,,,,,,,因為點在線段的延長線上,設(shè),解得,所在直線的方程為因為點在邊所在直線上,故設(shè)當時故選:【點睛】本題考查向量的數(shù)量積,關(guān)鍵是建立平面直角坐標系,屬于中檔題.10、B【解析】
求得的二項展開式的通項為,令時,可得項的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項展開式的通項為,令,即,則項的系數(shù)為,充分性成立;當?shù)恼归_式中項的系數(shù)為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.11、C【解析】令圓的半徑為1,則,故選C.12、A【解析】
求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數(shù)的圖象沿軸向左平移個單位長度,得到的圖象對應(yīng)函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當時,.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.【點睛】本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運算求解能力與推理能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)約束條件可以畫出可行域,從而將問題轉(zhuǎn)化為直線在軸截距最大的問題的求解,通過數(shù)形結(jié)合的方式可確定過時,取最大值,代入可求得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示:將化為,則最大時,直線在軸截距最大;由直線平移可知,當過時,在軸截距最大,由得:,.故答案為:.【點睛】本題考查線性規(guī)劃中最值問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為直線在軸截距的最值的求解問題,通過數(shù)形結(jié)合的方式可求得結(jié)果.14、1【解析】
直接根據(jù)分層抽樣的比例關(guān)系得到答案.【詳解】分層抽樣的抽取比例為,∴抽取學生的人數(shù)為6001.故答案為:1.【點睛】本題考查了分層抽樣的計算,屬于簡單題.15、【解析】
先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標準差.【詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標準差為1.故答案為:1.【點睛】本題考查一組數(shù)據(jù)據(jù)的標準差的求法,考查平均數(shù)、方差、標準差的定義等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.16、1【解析】
按照個位上的9元的支付情況分類,三個數(shù)位上的錢數(shù)分步計算,相加即可.【詳解】9元的支付有兩種情況,或者,①當9元采用方式支付時,200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;②當9元采用方式支付時:200元的支付方式為,或者或者共3種方式,10元的支付只能用1張10元,此時共有種支付方式;所以總的支付方式共有種.故答案為:1.【點睛】本題考查了分類加法計數(shù)原理和分步乘法計數(shù)原理,屬于中檔題.做題時注意分類做到不重不漏,分步做到步驟完整.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時,的斜率為0時,的斜率存在且不為0時,設(shè)出直線方程,聯(lián)立方程組,用韋達定理和弦長公式以及四邊形的面積公式計算即可.【詳解】(1)由焦點與短軸兩端點的連線相互垂直及橢圓的對稱性可知,,∵過點且與軸垂直的直線被橢圓截得的線段長為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當直線的斜率不存在時,直線的斜率為0,此時(ii)當直線的斜率為零時,.(iii)當直線的斜率存在且不等于零時,設(shè)直線的方程為,聯(lián)立,得,設(shè)的橫坐標分別為,則.所以,(注:的長度也可以用點到直線的距離和勾股定理計算.)由可得直線的方程為,聯(lián)立橢圓的方程消去,得設(shè)的橫坐標為,則..綜上,由(i)(ii)(ⅲ)得的取值范圍是.【點睛】本題考查橢圓的標準方程與幾何性質(zhì)、直線與圓錐曲線的位置關(guān)系的應(yīng)用問題,解答此類題目,通常利用的關(guān)系,確定橢圓方程是基礎(chǔ);通過聯(lián)立直線方程與橢圓方程建立方程組,應(yīng)用一元二次方程根與系數(shù),得到目標函數(shù)解析式,運用函數(shù)知識求解;本題是難題.18、(1),.(2)【解析】
(1)由余弦定理的,然后根據(jù)直線與圓相切的性質(zhì)求出,從而求出;(2)求得的表達式,通過求導研究函數(shù)的單調(diào)性求得最大值.【詳解】解:(1)連.由條件得.在三角形中,,,,由余弦定理,得,因為與半圓相切于,所以,所以,所以.所以四邊形的周長為,.(2)設(shè)四邊形的面積為,則,.所以,.令,得列表:+0-增最大值減答:要使改建成的展示區(qū)的面積最大,的值為.【點睛】本題考查余弦定理、直線與圓的位置關(guān)系、導數(shù)與函數(shù)最值的關(guān)系,考查考生的邏輯思維能力,運算求解能力,以及函數(shù)與方程的思想.19、(1)289200元;(2)能夠獲批;(3)應(yīng)選擇等額本金還款方式【解析】
(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個等差數(shù)列,即可由等差數(shù)列的前n項和公式求得其還款總額,減去本金即為還款的利息;(2)根據(jù)題意,采取等額本息的還款方式,每月還款額為一等比數(shù)列,設(shè)小張每月還款額為元,由等比數(shù)列求和公式及參考數(shù)據(jù),即可求得其還款額,與收入的一半比較即可判斷;(3)計算出等額本息還款方式時所付出的總利息,兩個利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構(gòu)成一個等差數(shù)列,記為,表示數(shù)列的前項和,則,,則,故小張該筆貸款的總利息為元.(2)設(shè)小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數(shù)列,則,所以,即,因為,所以小張該筆貸款能夠獲批.(3)小張采取等額本息貸款方式的總利息為:,因為,所以從經(jīng)濟利益的角度來考慮,小張應(yīng)選擇等額本金還款方式.【點睛】本題考查了等差數(shù)列與等比數(shù)列求和公式的綜合應(yīng)用,數(shù)列在實際問題中的應(yīng)用,理解題意是解決問題的關(guān)鍵,屬于中檔題.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)求函數(shù)的導函數(shù),即可求得切線的斜率,則切線方程得解;(Ⅱ)構(gòu)造函數(shù),對參數(shù)分類討論,求得函數(shù)的單調(diào)性,以及最值,即可容易求得參數(shù)范圍.【詳解】(Ⅰ)當時,,則.所以.又,故所求切線方程為,即.(Ⅱ)依題意,得,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年教師節(jié)特別策劃:課件設(shè)計比賽
- 多導睡眠監(jiān)測課件
- 國壽康欣終身險宣導課件(渠道版)
- 《醫(yī)藥連鎖行業(yè)分析》課件
- 河北省石家莊市辛集市2025屆中考沖刺卷生物試題含解析
- 浙江省重點中學2025屆中考適應(yīng)性考試生物試題含解析
- 計劃經(jīng)營科科員崗位安全生產(chǎn)責任制(4篇)
- 瓦斯抽放管理制度模版(2篇)
- 2025年上學期教師個人總結(jié)例文(2篇)
- 幼兒園學前班數(shù)學課件有趣的排序
- 中心城區(qū)給水工程專項規(guī)劃文本
- 304不銹鋼焊接熱裂原因及解決方法計劃
- 社會調(diào)查方法與調(diào)研報告撰寫培訓
- 個人房屋租賃合同電子版下載(標準版)
- 福建省泉州市2019-2020學年高二上學期期末物理試卷(含答案)
- 高中生物學科思維導圖(人教版必修二)
- 城市軌道交通安全管理課件(完整版)
- 監(jiān)理日志表(標準模版)
- 視頻監(jiān)控系統(tǒng)PPT幻燈片課件(PPT 168頁)
- GM∕T 0045-2016 金融數(shù)據(jù)密碼機技術(shù)規(guī)范
- 人力資源部年度工作計劃表(超級詳細版)
評論
0/150
提交評論