新高考數(shù)學(xué)一輪復(fù)習(xí)第3章 第01講 導(dǎo)數(shù)的概念及運(yùn)算 精講+精練(教師版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)第3章 第01講 導(dǎo)數(shù)的概念及運(yùn)算 精講+精練(教師版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)第3章 第01講 導(dǎo)數(shù)的概念及運(yùn)算 精講+精練(教師版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)第3章 第01講 導(dǎo)數(shù)的概念及運(yùn)算 精講+精練(教師版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)第3章 第01講 導(dǎo)數(shù)的概念及運(yùn)算 精講+精練(教師版)_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第01講導(dǎo)數(shù)的概念及運(yùn)算(精講+精練)目錄第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第二部分:課前自我評(píng)估測(cè)試第三部分:典型例題剖析高頻考點(diǎn)一:導(dǎo)數(shù)的概念高頻考點(diǎn)二:導(dǎo)數(shù)的運(yùn)算高頻考點(diǎn)三:導(dǎo)數(shù)的幾何意義①求切線方程(在型)②求切線方程(過(guò)型)③已知切線方程(或斜率)求參數(shù)④導(dǎo)數(shù)與函數(shù)圖象⑤共切點(diǎn)的公切線問(wèn)題⑥不同切點(diǎn)的公切線問(wèn)題⑦與切線有關(guān)的轉(zhuǎn)化問(wèn)題第四部分:高考真題感悟第五部分:第01講導(dǎo)數(shù)的概念及運(yùn)算(精練)第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶1、平均變化率(1)變化率事物的變化率是相關(guān)的兩個(gè)量的“增量的比值”。如氣球的平均膨脹率是半徑的增量與體積增量的比值.(2)平均變化率一般地,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的平均變化率為:SKIPIF1<0.(3)如何求函數(shù)的平均變化率求函數(shù)的平均變化率通常用“兩步”法:①作差:求出SKIPIF1<0和SKIPIF1<0②作商:對(duì)所求得的差作商,即SKIPIF1<0.2、導(dǎo)數(shù)的概念(1)定義:函數(shù)SKIPIF1<0在SKIPIF1<0處瞬時(shí)變化率是SKIPIF1<0,我們稱它為函數(shù)SKIPIF1<0在SKIPIF1<0處的導(dǎo)數(shù),記作SKIPIF1<0SKIPIF1<0SKIPIF1<0.(2)定義法求導(dǎo)數(shù)步驟:求函數(shù)的增量:SKIPIF1<0;求平均變化率:SKIPIF1<0;求極限,得導(dǎo)數(shù):SKIPIF1<0.3、導(dǎo)數(shù)的幾何意義函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的導(dǎo)數(shù)的幾何意義,就是曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的斜率SKIPIF1<0,即SKIPIF1<0.4、基本初等函數(shù)的導(dǎo)數(shù)公式基本初等函數(shù)導(dǎo)數(shù)SKIPIF1<0(SKIPIF1<0為常數(shù))SKIPIF1<0SKIPIF1<0(SKIPIF1<0)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(SKIPIF1<0)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<05、導(dǎo)數(shù)的運(yùn)算法則若SKIPIF1<0,SKIPIF1<0存在,則有(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<06、復(fù)合函數(shù)求導(dǎo)復(fù)合函數(shù)SKIPIF1<0的導(dǎo)數(shù)和函數(shù)SKIPIF1<0,SKIPIF1<0的導(dǎo)數(shù)間的關(guān)系為SKIPIF1<0,即SKIPIF1<0對(duì)SKIPIF1<0的導(dǎo)數(shù)等于SKIPIF1<0對(duì)SKIPIF1<0的導(dǎo)數(shù)與SKIPIF1<0對(duì)SKIPIF1<0的導(dǎo)數(shù)的乘積.7、曲線的切線問(wèn)題(1)在型求切線方程已知:函數(shù)SKIPIF1<0的解析式.計(jì)算:函數(shù)SKIPIF1<0在SKIPIF1<0或者SKIPIF1<0處的切線方程.步驟:第一步:計(jì)算切點(diǎn)的縱坐標(biāo)SKIPIF1<0(方法:把SKIPIF1<0代入原函數(shù)SKIPIF1<0中),切點(diǎn)SKIPIF1<0.第二步:計(jì)算切線斜率SKIPIF1<0.第三步:計(jì)算切線方程.切線過(guò)切點(diǎn)SKIPIF1<0,切線斜率SKIPIF1<0。根據(jù)直線的點(diǎn)斜式方程得到切線方程:SKIPIF1<0.(2)過(guò)型求切線方程已知:函數(shù)SKIPIF1<0的解析式.計(jì)算:過(guò)點(diǎn)SKIPIF1<0(無(wú)論該點(diǎn)是否在SKIPIF1<0上)的切線方程.步驟:第一步:設(shè)切點(diǎn)SKIPIF1<0第二步:計(jì)算切線斜率SKIPIF1<0;計(jì)算切線斜率SKIPIF1<0;第三步:令:SKIPIF1<0,解出SKIPIF1<0,代入SKIPIF1<0求斜率第三步:計(jì)算切線方程.根據(jù)直線的點(diǎn)斜式方程得到切線方程:SKIPIF1<0.第二部分:課前自我評(píng)估測(cè)試第二部分:課前自我評(píng)估測(cè)試一、判斷題1.(2021·全國(guó)·高二課前預(yù)習(xí))函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)值就是曲線y=f(x)在x=x0處的切線的斜率()【答案】正確函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)值就是曲線y=f(x)在x=x0處的切線的斜率.2.(2021·全國(guó)·高二課前預(yù)習(xí))函數(shù)在x=x0處的導(dǎo)數(shù)f′(x0)是一個(gè)常數(shù)()【答案】正確函數(shù)在x=x0處的導(dǎo)數(shù)f′(x0)是一個(gè)常數(shù).3.(2021·全國(guó)·高二課前預(yù)習(xí))函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)值與Δx的正、負(fù)無(wú)關(guān).()【答案】正確4.(2021·全國(guó)·高二課前預(yù)習(xí))設(shè)x=x0+Δx,則Δx=x-x0,則Δx趨近于0時(shí),x趨近于x0,因此,f′(x0)=SKIPIF1<0SKIPIF1<0=SKIPIF1<0SKIPIF1<0.()【答案】正確二、單選題1.(2022·河北邢臺(tái)·高二階段練習(xí))函數(shù)SKIPIF1<0從1到2的平均變化率為(

)A.SKIPIF1<0 B.4 C.SKIPIF1<0 D.6【答案】A函數(shù)SKIPIF1<0從1到2的平均變化率為:SKIPIF1<0.故選:A.2.(2022·四川·攀枝花七中高二階段練習(xí)(理))已知函數(shù)SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】DSKIPIF1<0,則SKIPIF1<0SKIPIF1<0故選:D3.(2022·江西九江·二模)曲線SKIPIF1<0在SKIPIF1<0處的切線傾斜角是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B設(shè)曲線SKIPIF1<0在SKIPIF1<0處的切線傾斜角為SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,因此,SKIPIF1<0.故選:B.4.(2022·安徽滁州·高二階段練習(xí))曲線SKIPIF1<0在SKIPIF1<0處的切線的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B解:由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以曲線SKIPIF1<0在SKIPIF1<0處的切線的方程為SKIPIF1<0,即SKIPIF1<0.故選:B.第三部分:典型例題剖析第三部分:典型例題剖析高頻考點(diǎn)一:導(dǎo)數(shù)的概念1.(2022·河北邢臺(tái)·高二階段練習(xí))已知函數(shù)SKIPIF1<0的圖象如圖所示,SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A如圖所示,根據(jù)導(dǎo)數(shù)的幾何意義,可得SKIPIF1<0表示曲線在SKIPIF1<0點(diǎn)處的切線的斜率,即直線SKIPIF1<0的斜率SKIPIF1<0,SKIPIF1<0表示曲線在SKIPIF1<0點(diǎn)處的切線的斜率,即直線SKIPIF1<0的斜率SKIPIF1<0,又由平均變化率的定義,可得SKIPIF1<0表示過(guò)SKIPIF1<0兩點(diǎn)的割線的斜率SKIPIF1<0,結(jié)合圖象,可得SKIPIF1<0,所以SKIPIF1<0.故選:A.2.(2022·安徽·蕪湖一中高二階段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0處的導(dǎo)數(shù)為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C根據(jù)題意,SKIPIF1<0.故選:C3.(2022·陜西·西安市閻良區(qū)關(guān)山中學(xué)高二階段練習(xí)(理))已知SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.高頻考點(diǎn)二:導(dǎo)數(shù)的運(yùn)算1.(多選)(2022·河北·武安市第三中學(xué)高二階段練習(xí))下列運(yùn)算正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BDSKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故AD錯(cuò)誤,BC正確.故選:BC.2.(2022·重慶市青木關(guān)中學(xué)校高二階段練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0__________.【答案】4SKIPIF1<0,則SKIPIF1<0故答案為:SKIPIF1<03.(2022·四川·攀枝花七中高二階段練習(xí)(理))求下列函數(shù)的導(dǎo)數(shù):(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【答案】(1)SKIPIF1<0SKIPIF1<0;(2)SKIPIF1<0SKIPIF1<0;(3)SKIPIF1<0SKIPIF1<0.(1)因?yàn)镾KIPIF1<0,故SKIPIF1<0SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,故SKIPIF1<0SKIPIF1<0.(3)因?yàn)镾KIPIF1<0,故SKIPIF1<0SKIPIF1<0.4.(2022·四川·棠湖中學(xué)高二階段練習(xí)(理))求下列函數(shù)的導(dǎo)數(shù).(1)f(x)=x3e-x;(2)g(x)=cos2x+ln(2x).【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)SKIPIF1<0(2)SKIPIF1<05.(2022·甘肅·甘南藏族自治州合作第一中學(xué)高二期末(文))求下列函數(shù)的導(dǎo)數(shù).(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)SKIPIF1<0(2)SKIPIF1<0高頻考點(diǎn)三:導(dǎo)數(shù)的幾何意義①求切線方程(在型)1.(2022·內(nèi)蒙古·赤峰二中高二期末(文))曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線過(guò)點(diǎn)SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0(

)A.SKIPIF1<0 B.0 C.1 D.2【答案】A解:因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,切線方程為SKIPIF1<0,因?yàn)榍芯€過(guò)點(diǎn)SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:A2.(2022·江西·臨川一中高二期末(文))已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CSKIPIF1<0則SKIPIF1<0,又SKIPIF1<0則函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0故選:C3.(2022·天津市濱海新區(qū)塘沽第一中學(xué)高二階段練習(xí))曲線SKIPIF1<0在SKIPIF1<0處的切線SKIPIF1<0與坐標(biāo)軸圍成的三角形的面積為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,所以,直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,因此,直線SKIPIF1<0與坐標(biāo)軸圍成的三角形的面積為SKIPIF1<0.故選:B.4.(2022·湖南·一模)若曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0平行,則SKIPIF1<0(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.2【答案】C由SKIPIF1<0,顯然SKIPIF1<0在曲線SKIPIF1<0上,所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的斜率為SKIPIF1<0,因此切線方程為:SKIPIF1<0,直線SKIPIF1<0的斜率為SKIPIF1<0,因?yàn)榍€SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0平行,所以SKIPIF1<0,故選:C5.(2022·河南·模擬預(yù)測(cè)(文))函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A依題意,SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,于是有SKIPIF1<0,即SKIPIF1<0,所以所求切線方程為:SKIPIF1<0.故選:A6.(2022·河南·沈丘縣第一高級(jí)中學(xué)高二期末(文))已知函數(shù)SKIPIF1<0,則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A函數(shù)SKIPIF1<0,求導(dǎo)得:SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,于是得:SKIPIF1<0,即SKIPIF1<0,所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.故選:A②求切線方程(過(guò)型)1.(2022·江西·南昌大學(xué)附屬中學(xué)高二期末(理))曲線y=lnx在點(diǎn)M處的切線過(guò)原點(diǎn),則該切線的斜率為(

)A.1 B.e C.-1 D.SKIPIF1<0【答案】D設(shè)切點(diǎn)為SKIPIF1<0,SKIPIF1<0,故在SKIPIF1<0點(diǎn)的切線的斜率為SKIPIF1<0,所以SKIPIF1<0,所以切點(diǎn)為SKIPIF1<0,切線的斜率為SKIPIF1<0.故選:D2.(2022·全國(guó)·高三專題練習(xí))若曲線SKIPIF1<0的一條切線經(jīng)過(guò)點(diǎn)(8,3),則此切線的斜率為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】C由題意,可設(shè)切點(diǎn)坐標(biāo)為(x0,SKIPIF1<0),由SKIPIF1<0,得y′=SKIPIF1<0,切線斜率k=SKIPIF1<0,由點(diǎn)斜式可得切線方程為y-SKIPIF1<0=SKIPIF1<0(x-x0),又切線過(guò)點(diǎn)(8,3),所以3-SKIPIF1<0=SKIPIF1<0(8-x0),整理得x0-6SKIPIF1<0+8=0,解得SKIPIF1<0=4或2,所以切線斜率k=SKIPIF1<0或SKIPIF1<0.故選:C.3.(2022·江蘇·南京航空航天大學(xué)蘇州附屬中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0,則過(guò)點(diǎn)SKIPIF1<0可作曲線SKIPIF1<0的切線的條數(shù)為(

)A.0 B.1 C.2 D.3【答案】C解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)切點(diǎn)為SKIPIF1<0,所以在切點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,又SKIPIF1<0在切線上,所以SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以過(guò)點(diǎn)SKIPIF1<0可作曲線SKIPIF1<0的切線的條數(shù)為2.故選:C.4.(2022·陜西安康·高三期末(文))曲線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0的切線方程是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B由題意可得點(diǎn)SKIPIF1<0不在曲線SKIPIF1<0上,設(shè)切點(diǎn)為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以所求切線的斜率SKIPIF1<0,所以SKIPIF1<0.因?yàn)辄c(diǎn)SKIPIF1<0是切點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,明顯SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0有唯一解SKIPIF1<0,則所求切線的斜率SKIPIF1<0,故所求切線方程為SKIPIF1<0.故選:B.5.(2022·陜西·西北工業(yè)大學(xué)附屬中學(xué)一模(理))已知SKIPIF1<0,若過(guò)一點(diǎn)SKIPIF1<0可以作出該函數(shù)的兩條切線,則下列選項(xiàng)一定成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A設(shè)切點(diǎn)為SKIPIF1<0,對(duì)函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,則切線斜率為SKIPIF1<0,所以,切線方程為SKIPIF1<0,即SKIPIF1<0,所以,SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,由題意可知,方程SKIPIF1<0有兩個(gè)不等的實(shí)根.SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),對(duì)任意的SKIPIF1<0,SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則方程SKIPIF1<0至多只有一個(gè)根,不合乎題意;②當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞增.由題意可得SKIPIF1<0,可得SKIPIF1<0.故選:A.6.(2022·江西·模擬預(yù)測(cè)(文))已知曲線SKIPIF1<0與過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0相切,則SKIPIF1<0的斜率為_______.【答案】SKIPIF1<0##SKIPIF1<0解:設(shè)切點(diǎn)為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則切線方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0代入得SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,解得SKIPIF1<0,所以切線的斜率為SKIPIF1<0.故答案為:SKIPIF1<0.7.(2022·全國(guó)·高三專題練習(xí))已知函數(shù)f(x)=x+SKIPIF1<0,若曲線y=f(x)存在兩條過(guò)(1,0)點(diǎn)的切線,則a的取值范圍是________.【答案】SKIPIF1<0或SKIPIF1<0由題得SKIPIF1<0,設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,則切線方程為SKIPIF1<0,又切線過(guò)點(diǎn)SKIPIF1<0,可得SKIPIF1<0,整理得SKIPIF1<0,因?yàn)榍€SKIPIF1<0存在兩條切線,故方程有兩個(gè)不等實(shí)根且SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0,為兩個(gè)重根,不成立,即滿足SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故SKIPIF1<0的取值范圍是SKIPIF1<0或SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<0③已知切線方程(或斜率)求參數(shù)1.(2022·北京·北理工附中高二階段練習(xí))如圖,函數(shù)SKIPIF1<0的圖像在點(diǎn)P處的切線方程是SKIPIF1<0,則SKIPIF1<0(

)A.-2 B.2 C.3 D.無(wú)法確定【答案】B由題圖,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0.故選:B2.(2022·湖南·長(zhǎng)沙縣實(shí)驗(yàn)中學(xué)高二階段練習(xí))已知函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則SKIPIF1<0(

)A.-2 B.-1 C.2 D.3【答案】B函數(shù)SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,∴SKIPIF1<0,即函數(shù)在SKIPIF1<0處的切線斜率為SKIPIF1<0,由切線與直線SKIPIF1<0垂直,可得SKIPIF1<0,解得SKIPIF1<0.故選:B.3.(2022·吉林白山·一模(理))函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線斜率為1,則SKIPIF1<0(

)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】A因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:A.4.(2022·江蘇省蘇州實(shí)驗(yàn)中學(xué)高二階段練習(xí))已知直線SKIPIF1<0是曲線SKIPIF1<0的切線,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C設(shè)直線SKIPIF1<0與曲線SKIPIF1<0的切線點(diǎn)的橫坐標(biāo)為SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.5.(2022·全國(guó)·高三專題練習(xí))若點(diǎn)P是曲線SKIPIF1<0上任意一點(diǎn),則點(diǎn)P到直線SKIPIF1<0的距離的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A設(shè)平行于直線SKIPIF1<0且與曲線SKIPIF1<0相切的切線對(duì)應(yīng)切點(diǎn)為SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故點(diǎn)P的坐標(biāo)為SKIPIF1<0,故點(diǎn)P到直線SKIPIF1<0的最小值為:SKIPIF1<0.故選:A.6.(2022·四川省綿陽(yáng)南山中學(xué)高二階段練習(xí)(理))若曲線SKIPIF1<0存在垂直于y軸的切線,則a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C依題意,f(x)存在垂直與y軸的切線,即存在切線斜率SKIPIF1<0的切線,又SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0有正根,即SKIPIF1<0有正根,即函數(shù)y=-2a與函數(shù)SKIPIF1<0的圖像有交點(diǎn),令SKIPIF1<0,則g(t)=SKIPIF1<0,∴g(t)≥g(SKIPIF1<0)=SKIPIF1<0,∴-2a≥SKIPIF1<0,即a≤SKIPIF1<0.故選:C.7.(2022·全國(guó)·高三專題練習(xí))點(diǎn)A在直線y=x上,點(diǎn)B在曲線SKIPIF1<0上,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.2【答案】A設(shè)平行于直線y=x的直線y=x+b與曲線SKIPIF1<0相切,則兩平行線間的距離即為SKIPIF1<0的最小值.設(shè)直線y=x+b與曲線SKIPIF1<0的切點(diǎn)為SKIPIF1<0,則由切點(diǎn)還在直線y=x+b上可得SKIPIF1<0,由切線斜率等于切點(diǎn)的導(dǎo)數(shù)值可得SKIPIF1<0,聯(lián)立解得m=1,b=-1,由平行線間的距離公式可得SKIPIF1<0的最小值為SKIPIF1<0,故選:A.④導(dǎo)數(shù)與函數(shù)圖象1.(2022·北京·北理工附中高二階段練習(xí))函數(shù)SKIPIF1<0的圖像如圖所示,下列不等關(guān)系正確的是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C如圖所示,根據(jù)導(dǎo)數(shù)的幾何意義,可得SKIPIF1<0表示切線SKIPIF1<0斜率SKIPIF1<0,SKIPIF1<0表示切線SKIPIF1<0斜率SKIPIF1<0,又由平均變化率的定義,可得SKIPIF1<0,表示割線SKIPIF1<0的斜率SKIPIF1<0,結(jié)合圖象,可得SKIPIF1<0,即SKIPIF1<0.故選:C.2.(2022·全國(guó)·高二單元測(cè)試)已知函數(shù)SKIPIF1<0的圖象是下列四個(gè)圖象之一,且其導(dǎo)函數(shù)SKIPIF1<0的圖象如圖所示,則該函數(shù)的圖象是(

)A. B.C. D.【答案】A由函數(shù)f(x)的導(dǎo)函數(shù)y=f′(x)的圖像自左至右是先減后增,可知函數(shù)y=f(x)圖像的切線的斜率自左至右先減小后增大,且SKIPIF1<0,在SKIPIF1<0處的切線的斜率為0,故BCD錯(cuò)誤,A正確.故選:A.3.(2022·江蘇·高二)如圖,函數(shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線方程是SKIPIF1<0,則SKIPIF1<0(

).A.1 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】D因?yàn)楹瘮?shù)SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線方程是SKIPIF1<0,切點(diǎn)的橫坐標(biāo)為SKIPIF1<0,由導(dǎo)數(shù)的幾何意義可得SKIPIF1<0,所以SKIPIF1<0,故選:D.4.(2021·全國(guó)·高二單元測(cè)試)如圖所示,SKIPIF1<0是可導(dǎo)函數(shù),直線l:y=kx+3是曲線y=f(x)在x=1處的切線,令SKIPIF1<0,SKIPIF1<0是h(x)的導(dǎo)函數(shù),則SKIPIF1<0的值是(

)A.2 B.1 C.-1 D.-3【答案】D根據(jù)圖象可知SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.故選:D⑤共切點(diǎn)的公切線問(wèn)題1.(2021·江西·高三階段練習(xí)(理))若曲線SKIPIF1<0與曲線SKIPIF1<0在公共點(diǎn)處有公共切線,則實(shí)數(shù)SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A設(shè)公共點(diǎn)為SKIPIF1<0,SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,曲線SKIPIF1<0在SKIPIF1<0處的切線斜率SKIPIF1<0,SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,曲線SKIPIF1<0在SKIPIF1<0處的切線斜率SKIPIF1<0,因?yàn)閮汕€在公共點(diǎn)SKIPIF1<0處有公共切線,所以SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故選:A.2.(2021·重慶·高二階段練習(xí))已知兩曲線SKIPIF1<0和SKIPIF1<0都經(jīng)過(guò)點(diǎn)SKIPIF1<0,且在點(diǎn)SKIPIF1<0處有公切線,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D由題意SKIPIF1<0即SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又因?yàn)閮汕€在點(diǎn)P處有公切線,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立)故選:D3.(2021·云南·曲靖一中模擬預(yù)測(cè)(理))設(shè)曲線SKIPIF1<0和曲線SKIPIF1<0在它們的公共點(diǎn)SKIPIF1<0處有相同的切線,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】DSKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0為SKIPIF1<0與SKIPIF1<0公共點(diǎn),SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0.故選:D.4.(2022·全國(guó)·高三專題練習(xí)(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0在公共點(diǎn)處的切線相同,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0的公共點(diǎn)設(shè)為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:B.5.(2022·全國(guó)·高三專題練習(xí))若函數(shù)f(x)=alnx(a∈R)與函數(shù)g(x)SKIPIF1<0在公共點(diǎn)處有共同的切線,則實(shí)數(shù)a的值為(

)A.4 B.SKIPIF1<0 C.SKIPIF1<0 D.e【答案】C由已知得SKIPIF1<0,設(shè)切點(diǎn)橫坐標(biāo)為t,∴SKIPIF1<0,解得SKIPIF1<0.故選:C.⑥不同切點(diǎn)的公切線問(wèn)題1.(2022·河北省唐縣第一中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若直線SKIPIF1<0與函數(shù)SKIPIF1<0,SKIPIF1<0的圖象都相切,則SKIPIF1<0的最小值為(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B設(shè)直線SKIPIF1<0與函數(shù)SKIPIF1<0,SKIPIF1<0的圖象相切的切點(diǎn)分別為SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0,有SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0.又由SKIPIF1<0,有SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí)取“=”.故選:B2.(2022·重慶市育才中學(xué)高三階段練習(xí))若直線SKIPIF1<0(SKIPIF1<0)為曲線SKIPIF1<0與曲線SKIPIF1<0的公切線,則l的縱截距SKIPIF1<0(

)A.0 B.1 C.e D.SKIPIF1<0【答案】D設(shè)l與SKIPIF1<0的切點(diǎn)為SKIPIF1<0,則由SKIPIF1<0,有SKIPIF1<0.同理,設(shè)l與SKIPIF1<0的切點(diǎn)為SKIPIF1<0,由SKIPIF1<0,有SKIPIF1<0.故SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0則SKIPIF1<0或SKIPIF1<0.因SKIPIF1<0,所以l為SKIPIF1<0時(shí)不成立.故SKIPIF1<0,故選:D.3.(2022·湖北·安陸第一高中高二階段練習(xí))若存在過(guò)點(diǎn)(0,-2)的直線與曲線SKIPIF1<0和曲線SKIPIF1<0都相切,則實(shí)數(shù)a的值是(

)A.2 B.1 C.0 D.-2【答案】ASKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若直線與SKIPIF1<0和SKIPIF1<0的切點(diǎn)分別為(SKIPIF1<0,SKIPIF1<0),SKIPIF1<0,∴過(guò)(0,-2)的直線為SKIPIF1<0、SKIPIF1<0,則有SKIPIF1<0,可得SKIPIF1<0.故選:A.4.(2022·湖南永州·二模)若函數(shù)SKIPIF1<0與SKIPIF1<0存在兩條公切線,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D設(shè)切線與曲線SKIPIF1<0相切于點(diǎn)SKIPIF1<0,對(duì)函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,所以,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0,聯(lián)立SKIPIF1<0可得SKIPIF1<0,由題意可得SKIPIF1<0且SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,所以,SKIPIF1<0.且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,如下圖所示:由題意可知,直線SKIPIF1<0與曲線SKIPIF1<0有兩個(gè)交點(diǎn),則SKIPIF1<0,解得SKIPIF1<0.故選:D.5.(2022·山西呂梁·高二期末)若直線SKIPIF1<0是曲線SKIPIF1<0的切線,也是曲線SKIPIF1<0的切線,則SKIPIF1<0__________.【答案】SKIPIF1<0設(shè)曲線SKIPIF1<0的切點(diǎn)為:SKIPIF1<0,由SKIPIF1<0,所以過(guò)該切點(diǎn)的切線斜率為:SKIPIF1<0,于是切線方程為:SKIPIF1<0,因此有:SKIPIF1<0,設(shè)曲線SKIPIF1<0的切點(diǎn)為:SKIPIF1<0,由SKIPIF1<0,所以過(guò)該切點(diǎn)的切線斜率為:SKIPIF1<0,于是切線方程為:SKIPIF1<0,因此有:SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,即SKIPIF1<0,因此SKIPIF1<0,故答案為:SKIPIF1<06.(2022·全國(guó)·高三專題練習(xí))若曲線SKIPIF1<0與曲線SKIPIF1<0有公切線,則SKIPIF1<0的取值范圍是_____________.【答案】SKIPIF1<0設(shè)SKIPIF1<0是曲線SKIPIF1<0上一點(diǎn),由SKIPIF1<0,因此過(guò)點(diǎn)SKIPIF1<0的切線的斜率為SKIPIF1<0,所以切線方程為:SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0是曲線SKIPIF1<0上一點(diǎn),由SKIPIF1<0,所以過(guò)SKIPIF1<0點(diǎn)的切線的斜率為SKIPIF1<0,所以切線方程為:SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,當(dāng)這兩條切線重合時(shí),就是兩個(gè)曲線的公切線,因此有:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0是減函數(shù),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<07.(2022·四川·棠湖中學(xué)高二階段練習(xí)(文))已知SKIPIF1<0(SKIPIF1<0為自然對(duì)數(shù)的成數(shù)),SKIPIF1<0,直線SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的公切線,則直線SKIPIF1<0的方程為________.【答案】SKIPIF1<0或SKIPIF1<0設(shè)公切線SKIPIF1<0與SKIPIF1<0且于點(diǎn)SKIPIF1<0,與曲線SKIPIF1<0切于點(diǎn)SKIPIF1<0,則有SKIPIF1<0SKIPIF1<0②又SKIPIF1<0,∴SKIPIF1<0.∵過(guò)點(diǎn)SKIPIF1<0的直線SKIPIF1<0的斜率為SKIPIF1<0,∴SKIPIF1<0.③由①②③消去SKIPIF1<0整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,直線SKIPIF1<0與曲線SKIPIF1<0的切點(diǎn)為SKIPIF1<0,SKIPIF1<0,此時(shí)切線方程為SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,直線SKIPIF1<0與曲線SKIPIF1<0的切點(diǎn)為SKIPIF1<0,SKIPIF1<0,此時(shí)切線方程為SKIPIF1<0,即SKIPIF1<0.故直線SKIPIF1<0的方程為SKIPIF1<0或SKIPIF1<0.所以答案為SKIPIF1<0或SKIPIF1<0.⑦與切線有關(guān)的轉(zhuǎn)化問(wèn)題1.(2022·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BSKIPIF1<0的最小值可轉(zhuǎn)化為函數(shù)SKIPIF1<0圖像上的點(diǎn)SKIPIF1<0與直線SKIPIF1<0上的點(diǎn)SKIPIF1<0的距離的最小值.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0上,點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0上,SKIPIF1<0表示曲線SKIPIF1<0上點(diǎn)S

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論