2025屆山東省濱州行知中學高考考前模擬數學試題含解析_第1頁
2025屆山東省濱州行知中學高考考前模擬數學試題含解析_第2頁
2025屆山東省濱州行知中學高考考前模擬數學試題含解析_第3頁
2025屆山東省濱州行知中學高考考前模擬數學試題含解析_第4頁
2025屆山東省濱州行知中學高考考前模擬數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省濱州行知中學高考考前模擬數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設實數、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.142.已知等差數列的前13項和為52,則()A.256 B.-256 C.32 D.-323.若,則()A. B. C. D.4.中,,為的中點,,,則()A. B. C. D.25.已知命題:是“直線和直線互相垂直”的充要條件;命題:對任意都有零點;則下列命題為真命題的是()A. B. C. D.6.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.7.復數為純虛數,則()A.i B.﹣2i C.2i D.﹣i8.已知拋物線,F(xiàn)為拋物線的焦點且MN為過焦點的弦,若,,則的面積為()A. B. C. D.9.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.10.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A. B.C. D.11.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.12.已知,則的大小關系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足,則的展開式中的系數為______.14.在中,角,,的對邊長分別為,,,滿足,,則的面積為__.15.數列滿足,則,_____.若存在n∈N*使得成立,則實數λ的最小值為______16.已知函數,若,則實數的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足:,,且對任意的都有,(Ⅰ)證明:對任意,都有;(Ⅱ)證明:對任意,都有;(Ⅲ)證明:.18.(12分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.19.(12分)某市調硏機構對該市工薪階層對“樓市限購令”態(tài)度進行調查,抽調了50名市民,他們月收入頻數分布表和對“樓市限購令”贊成人數如下表:月收入(單位:百元)頻數51055頻率0.10.20.10.1贊成人數4812521(1)若所抽調的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調查者中隨機選取2人進行追蹤調查,選中的2人中恰有人贊成“樓市限購令”,求的分布列與數學期望.(3)從月收入頻率分布表的6組市民中分別隨機抽取3名市民,恰有一組的3名市民都不贊成“樓市限購令”,根據表格數據,判斷這3名市民來自哪組的可能性最大?請直接寫出你的判斷結果.20.(12分)已知函數(1)若,試討論的單調性;(2)若,實數為方程的兩不等實根,求證:.21.(12分)已知函數,其導函數為,(1)若,求不等式的解集;(2)證明:對任意的,恒有.22.(10分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計劃建造一條自小鎮(zhèn)經小島至對岸的水上通道(圖中粗線部分折線段,在右側),為保護小島,段設計成與圓相切.設.(1)試將通道的長表示成的函數,并指出定義域;(2)若建造通道的費用是每公里100萬元,則建造此通道最少需要多少萬元?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

做出滿足條件的可行域,根據圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據圖象,當目標函數過點時,取得最小值,由,解得,即,所以的最小值為.故選:D.【點睛】本題考查二元一次不等式組表示平面區(qū)域,利用數形結合求線性目標函數的最值,屬于基礎題.2、A【解析】

利用等差數列的求和公式及等差數列的性質可以求得結果.【詳解】由,,得.選A.【點睛】本題主要考查等差數列的求和公式及等差數列的性質,等差數列的等和性應用能快速求得結果.3、D【解析】

直接利用二倍角余弦公式與弦化切即可得到結果.【詳解】∵,∴,故選D【點睛】本題考查的知識要點:三角函數關系式的恒等變變換,同角三角函數關系式的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.4、D【解析】

在中,由正弦定理得;進而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點睛】本題主要考查了正余弦定理的應用,考查了學生的運算求解能力.5、A【解析】

先分別判斷每一個命題的真假,再利用復合命題的真假判斷確定答案即可.【詳解】當時,直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當直線和直線互相垂直時,,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當時,沒有零點,所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點睛】本題主要考查充要條件的判斷和兩直線的位置關系,考查二次函數的圖象,考查學生對這些知識的理解掌握水平.6、A【解析】

畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據,即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關鍵點是通過幾何關系求得球心位置和球半徑,方法較多,屬于較易題目.7、B【解析】

復數為純虛數,則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數,∴,解得..故選:.【點睛】本題考查復數的分類,屬于基礎題.8、A【解析】

根據可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設點點,則由拋物線定義知,,則.由得,則.又MN為過焦點的弦,所以,則,所以.故選:A【點睛】本題考查拋物線的方程應用,同時也考查了焦半徑公式等.屬于中檔題.9、B【解析】

直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.10、B【解析】

列出循環(huán)的每一步,進而可求得輸出的值.【詳解】根據程序框圖,執(zhí)行循環(huán)前:,,,執(zhí)行第一次循環(huán)時:,,所以:不成立.繼續(xù)進行循環(huán),…,當,時,成立,,由于不成立,執(zhí)行下一次循環(huán),,,成立,,成立,輸出的的值為.故選:B.【點睛】本題考查的知識要點:程序框圖的循環(huán)結構和條件結構的應用,主要考查學生的運算能力和轉換能力,屬于基礎題型.11、D【解析】

根據雙曲線的定義可得的邊長為,然后在中應用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關系式.12、B【解析】

利用函數與函數互為反函數,可得,再利用對數運算性質比較a,c進而可得結論.【詳解】依題意,函數與函數關于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數、指數的大小比較,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

根據二項式定理求出,然后再由二項式定理或多項式的乘法法則結合組合的知識求得系數.【詳解】由題意,.∴的展開式中的系數為.故答案為:1.【點睛】本題考查二項式定理,掌握二項式定理的應用是解題關鍵.14、.【解析】

由二次方程有解的條件,結合輔助角公式和正弦函數的值域可求,進而可求,然后結合余弦定理可求,代入,計算可得所求.【詳解】解:把看成關于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負的舍去),.故答案為.【點睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應用,屬于中檔題.15、【解析】

利用“退一作差法”求得數列的通項公式,將不等式分離常數,利用商比較法求得的最小值,由此求得的取值范圍,進而求得的最小值.【詳解】當時兩式相減得所以當時,滿足上式綜上所述存在使得成立的充要條件為存在使得,設,所以,即,所以單調遞增,的最小項,即有的最小值為.故答案為:(1).(2).【點睛】本小題主要考查根據遞推關系式求數列的通項公式,考查數列單調性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.16、【解析】

畫圖分析可得函數是偶函數,且在上單調遞減,利用偶函數性質和單調性可解.【詳解】作出函數的圖如下所示,觀察可知,函數為偶函數,且在上單調遞增,在上單調遞減,故,故實數的取值范圍為.故答案為:【點睛】本題考查利用函數奇偶性及單調性解不等式.函數奇偶性的常用結論:(1)如果函數是偶函數,那么.(2)奇函數在兩個對稱的區(qū)間上具有相同的單調性;偶函數在兩個對稱的區(qū)間上具有相反的單調性.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析(3)見解析【解析】分析:(1)用反證法證明,注意應用題中所給的條件,有效利用,再者就是注意應用反證法證題的步驟;(2)將式子進行相應的代換,結合不等式的性質證得結果;(3)結合題中的條件,應用反證法求得結果.詳解:證明:(Ⅰ)證明:采用反證法,若不成立,則若,則,與任意的都有矛盾;若,則有,則與任意的都有矛盾;故對任意,都有成立;(Ⅱ)由得,則,由(Ⅰ)知,,即對任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,則,取時,有,與矛盾.則.得證.點睛:該題考查的是有關命題的證明問題,在證題的過程中,注意對題中的條件的等價轉化,注意對式子的等價變形,以及證題的思路,要掌握證明問題的方法,尤其是反證法的證題思路以及證明步驟.18、(1)(2)0【解析】

(1)根據題意,設直線,與聯(lián)立,得,再由弦長公式,求解.(2)設,根據直線的斜率為1,則,得到,再由,所以線段中點的縱坐標為,然后直線的方程與直線的方程聯(lián)立解得交點H的縱坐標,說明直線軸,直線的斜率為0.【詳解】(1)依題意,,則直線,聯(lián)立得;設,則,解得,故拋物線的方程為.(2),因為直線的斜率為1,則,所以,因為,所以線段中點的縱坐標為.直線的方程為,即①直線的方程為,即②聯(lián)立①②解得即點的縱坐標為,即直線軸,故直線的斜率為0.如果直線的斜率不存在,結論也顯然成立,綜上所述,直線的斜率為0.【點睛】本題考查拋物線的方程、直線與拋物線的位置關系,還考查推理論證能力以及化歸與轉化思想,屬于中檔題.19、(1),頻率分布直方圖見解析;(2)分布列見解析,;(3)來自的可能性最大.【解析】

(1)由頻率和為可知,根據求得,從而計算得到頻數,補全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計算求得每個取值對應的概率,由此得到分布列;根據數學期望的計算公式可求得期望;(3)根據中不贊成比例最大可知來自的可能性最大.【詳解】(1)由頻率分布表得:,即.收入在的有名,,,,則頻率分布直方圖如下:(2)收入在中贊成人數為,不贊成人數為,可能取值為,則;;,的分布列為:.(3)來自的可能性更大.【點睛】本題考查概率與統(tǒng)計部分知識的綜合應用,涉及到頻數、頻率的計算、頻率分布直方圖的繪制、服從于超幾何分布的隨機變量的分布列與數學期望的求解、統(tǒng)計估計等知識;考查學生的運算和求解能力.20、(1)答案不唯一,具體見解析(2)證明見解析【解析】

(1)根據題意得,分與討論即可得到函數的單調性;(2)根據題意構造函數,得,參變分離得,分析不等式,即轉化為,設,再構造函數,利用導數得單調性,進而得證.【詳解】(1)依題意,當時,,①當時,恒成立,此時在定義域上單調遞增;②當時,若,;若,;故此時的單調遞增區(qū)間為,單調遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設),即證,令,設,則,在單調遞減,即,從而有.方法2:由得令,則,當時,時,故在上單調遞增,在上單調遞減,不妨設,則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導)在上單調遞減,,故對于時,總有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論