版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023屆湖南省衡陽市耒陽市正源學(xué)校統(tǒng)一招生考試二月調(diào)考仿真模擬數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗,根據(jù)測驗結(jié)果繪制了雷達(dá)圖(如圖,每項指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲2.若,則函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是()A.B.C.D.3.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數(shù),則()A., B.,C., D.,4.已知函數(shù),其圖象關(guān)于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變B.先向右平移個單位長度,再把所得各點橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變C.先向右平移個單位長度,再把所得各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變D.先向左平移個單位長度,再把所得各點橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變5.為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測驗(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學(xué)運算最強6.已知函數(shù)的圖像上有且僅有四個不同的關(guān)于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.7.已知函數(shù),則()A.1 B.2 C.3 D.48.已知平面向量,滿足,,且,則()A.3 B. C. D.59.甲、乙兩名學(xué)生的六次數(shù)學(xué)測驗成績(百分制)的莖葉圖如圖所示.①甲同學(xué)成績的中位數(shù)大于乙同學(xué)成績的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績的方差小于乙同學(xué)成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④10.設(shè)集合,,則集合A. B. C. D.11.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.12.已知函數(shù)在上單調(diào)遞增,則的取值范圍()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校高三年級共有名學(xué)生參加了數(shù)學(xué)測驗(滿分分),已知這名學(xué)生的數(shù)學(xué)成績均不低于分,將這名學(xué)生的數(shù)學(xué)成績分組如下:,,,,,,得到的頻率分布直方圖如圖所示,則下列說法中正確的是________(填序號).①;②這名學(xué)生中數(shù)學(xué)成績在分以下的人數(shù)為;③這名學(xué)生數(shù)學(xué)成績的中位數(shù)約為;④這名學(xué)生數(shù)學(xué)成績的平均數(shù)為.14.已知雙曲線的一條漸近線方程為,則________.15.在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為__________.16.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,.函數(shù)的導(dǎo)函數(shù)在上存在零點.求實數(shù)的取值范圍;若存在實數(shù),當(dāng)時,函數(shù)在時取得最大值,求正實數(shù)的最大值;若直線與曲線和都相切,且在軸上的截距為,求實數(shù)的值.18.(12分)如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值19.(12分)[選修45:不等式選講]已知都是正實數(shù),且,求證:.20.(12分)如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點,滿足,求二面角的余弦值.21.(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍;(2)若,求的最大值.22.(10分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點為重心,與相交于點.(1)求證:平面;(2)求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)雷達(dá)圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎(chǔ)題.2.B【解析】函數(shù)在區(qū)間內(nèi)單調(diào)遞增,,在恒成立,在恒成立,,函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是,故選B.3.C【解析】
根據(jù)古典概型概率計算公式,計算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數(shù)學(xué)期望的計算,屬于中檔題.4.D【解析】
由函數(shù)的圖象關(guān)于直線對稱,得,進(jìn)而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關(guān)于直線對稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點“先向左平移個單位長度,得再將橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得”即可.故選:D【點睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運算求解能力,是中檔題5.D【解析】
根據(jù)所給的雷達(dá)圖逐個選項分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學(xué)建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學(xué)運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.6.D【解析】
根據(jù)對稱關(guān)系可將問題轉(zhuǎn)化為與有且僅有四個不同的交點;利用導(dǎo)數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點,通過數(shù)形結(jié)合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進(jìn)而得到結(jié)果.【詳解】關(guān)于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當(dāng)時,在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當(dāng)時,與有且僅有四個不同的交點設(shè),,則,解得:設(shè),,則,解得:,則本題正確選項:【點睛】本題考查根據(jù)直線與曲線交點個數(shù)確定參數(shù)范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關(guān)鍵是能夠通過對稱性將問題轉(zhuǎn)化為直線與曲線交點個數(shù)的問題,通過確定直線恒過的定點,采用數(shù)形結(jié)合的方式來進(jìn)行求解.7.C【解析】
結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.【點睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運算求解能力,屬于基礎(chǔ)題.8.B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點睛】考查向量的數(shù)量積及向量模的運算,是基礎(chǔ)題.9.A【解析】
由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績的中位數(shù)為,乙同學(xué)成績的中位數(shù)為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學(xué)的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).10.B【解析】
先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【點睛】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數(shù)化為正數(shù),且不等號的另一邊化為,然后通過因式分解,求得對應(yīng)的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.11.D【解析】
如圖所示,設(shè)的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.12.B【解析】
由,可得,結(jié)合在上單調(diào)遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調(diào)遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數(shù)的單調(diào)性的應(yīng)用,考查了學(xué)生的邏輯推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.②③【解析】
由頻率分布直方圖可知,解得,故①不正確;這名學(xué)生中數(shù)學(xué)成績在分以下的人數(shù)為,故②正確;設(shè)這名學(xué)生數(shù)學(xué)成績的中位數(shù)為,則,解得,故③正確;④這名學(xué)生數(shù)學(xué)成績的平均數(shù)為,故④不正確.綜上,說法正確的序號是②③.14.【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程寫出雙曲線的漸近線方程,結(jié)合題意可求得正實數(shù)的值.【詳解】雙曲線的漸近線方程為,由于該雙曲線的一條漸近線方程為,,解得.故答案為:.【點睛】本題考查利用雙曲線的漸近線方程求參數(shù),考查計算能力,屬于基礎(chǔ)題.15.【解析】
根據(jù)題意畫出幾何題,建立空間直角坐標(biāo)系,寫個各個點的坐標(biāo),并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據(jù)題意畫出幾何圖形,以為原點建立空間直角坐標(biāo)系:設(shè)正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.16.【解析】
甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據(jù)公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點睛】本題考查古典概型的概率的計算,考查學(xué)生分析問題的能力,難度容易.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.;4;12.【解析】
由題意可知,,求導(dǎo)函數(shù),方程在區(qū)間上有實數(shù)解,求出實數(shù)的取值范圍;由,則,分步討論,并利用導(dǎo)函數(shù)在函數(shù)的單調(diào)性的研究,得出正實數(shù)的最大值;設(shè)直線與曲線的切點為,因為,所以切線斜率,切線方程為,設(shè)直線與曲線的切點為,因為,所以切線斜率,即切線方程為,整理得.所以,求得,設(shè),則,所以在上單調(diào)遞增,最后求出實數(shù)的值.【詳解】由題意可知,,則,即方程在區(qū)間上有實數(shù)解,解得;因為,則,①當(dāng),即時,恒成立,所以在上單調(diào)遞增,不符題意;②當(dāng)時,令,解得:,當(dāng)時,,單調(diào)遞增,所以不存在,使得在上的最大值為,不符題意;③當(dāng)時,,解得:,且當(dāng)時,,當(dāng)時,,所以在上單調(diào)遞減,在上單調(diào)遞增,若,則在上單調(diào)遞減,所以,若,則上單調(diào)遞減,在上單調(diào)遞增,由題意可知,,即,整理得,因為存在,符合上式,所以,解得,綜上,的最大值為4;設(shè)直線與曲線的切點為,因為,所以切線斜率,即切線方程整理得:由題意可知,,即,即,解得所以切線方程為,設(shè)直線與曲線的切點為,因為,所以切線斜率,即切線方程為,整理得.所以,消去,整理得,且因為,解得,設(shè),則,所以在上單調(diào)遞增,因為,所以,所以,即.【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的研究,導(dǎo)數(shù)的幾何意義,屬于難題.18.(1)證明見解析(2)【解析】
(1)要證明線面平行,需證明線線平行,取的中點,連接,根據(jù)條件證明,即;(2)以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,求兩個平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點,連接.∵,∴為的中點.又為的中點,∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,不妨設(shè),則,,,,,,,,.設(shè)平面的法向量為,則,即,令,得.設(shè)平面的法向量為,則,即,令,得.從而,故平面與平面所成銳二面角的余弦值為.【點睛】本題考查線面平行的證明和空間坐標(biāo)法解決二面角的問題,意在考查空間想象能力,推理證明和計算能力,屬于中檔題型,證明線面平行,或證明面面平行時,關(guān)鍵是證明線線平行,所以做輔助線或證明時,需考慮構(gòu)造中位線或平行四邊形,這些都是證明線線平行的常方法.19.見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證.試題解析:證明:∵,又,∴考點:柯西不等式20.(1)證明見解析(2)(3)【解析】
(1)根據(jù)題意以為坐標(biāo)原點,建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),并表示出,由空間向量數(shù)量積運算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點在棱上,設(shè),再由,結(jié)合,由空間向量垂直的坐標(biāo)關(guān)系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數(shù)量積的運算求得兩個平面夾角的余弦值,再根據(jù)二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,∵,,點為棱的中點.∴,,,,,,.(2),設(shè)平面的法向量為.則,代入可得,令解得,即,設(shè)直線與平面所成角為,由直線與平面夾角可知所以直線與平面所成角的正弦值為.(3),由點在棱上,設(shè),故,由,得,解得,即,設(shè)平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿足,由圖可知,二面角為銳二面角,故二面角的余弦值為.【點睛】本題考查了空間向量的綜合應(yīng)用,由空間向量證明線線垂直,求直線與平面夾角及平面與平面形成的二面角大小,計算量較大,屬于中檔題.21.(1)(2)【解析】
(1)根據(jù)單調(diào)遞減可知導(dǎo)函數(shù)恒小于等于,采用參變分離的方法分離出,并將的部分構(gòu)造成新函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甲周疣的臨床護(hù)理
- 產(chǎn)后風(fēng)濕的健康宣教
- 緩慢型心律失常的護(hù)理
- 《設(shè)計你的人生》課件
- 《單片機原理及應(yīng)用 》課件-第5章
- 嘴巴里長泡的臨床護(hù)理
- 闊韌帶妊娠的健康宣教
- 皮脂腺增生的臨床護(hù)理
- JJF(陜) 116-2024 直流數(shù)字功率表校準(zhǔn)規(guī)范
- 比較線段的長短課件西西模
- 全球及中國光纖偏振器行業(yè)市場發(fā)展分析及前景趨勢與投資發(fā)展研究報告2024-2029版
- 手機硬件測試介紹
- 商品總監(jiān)述職報告
- 述職報告及工作思路(四篇合集)
- 2023-2024學(xué)年云南省昆明市盤龍區(qū)九年級上學(xué)期期末物理試卷及答案
- 福建省廈門市2023-2024學(xué)年九年級上學(xué)期化學(xué)用語教學(xué)質(zhì)量監(jiān)測試題(無答案)
- 導(dǎo)醫(yī)接待中的患者滿意度調(diào)查
- 國開電大可編程控制器應(yīng)用實訓(xùn)形考任務(wù)5
- pmc年終總結(jié)報告
- 上海話劇藝術(shù)中心崗位設(shè)置實施方案
- 龔舉成GE戰(zhàn)略變革歷程案例
評論
0/150
提交評論