![2025屆遼寧省遼陽(yáng)市重點(diǎn)中學(xué)高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view12/M03/02/1D/wKhkGWdEv9KAPiuQAAHtdhscEEc135.jpg)
![2025屆遼寧省遼陽(yáng)市重點(diǎn)中學(xué)高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view12/M03/02/1D/wKhkGWdEv9KAPiuQAAHtdhscEEc1352.jpg)
![2025屆遼寧省遼陽(yáng)市重點(diǎn)中學(xué)高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view12/M03/02/1D/wKhkGWdEv9KAPiuQAAHtdhscEEc1353.jpg)
![2025屆遼寧省遼陽(yáng)市重點(diǎn)中學(xué)高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view12/M03/02/1D/wKhkGWdEv9KAPiuQAAHtdhscEEc1354.jpg)
![2025屆遼寧省遼陽(yáng)市重點(diǎn)中學(xué)高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view12/M03/02/1D/wKhkGWdEv9KAPiuQAAHtdhscEEc1355.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆遼寧省遼陽(yáng)市重點(diǎn)中學(xué)高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.己知集合,,則()A. B. C. D.2.的展開(kāi)式中含的項(xiàng)的系數(shù)為()A. B.60 C.70 D.803.已知為虛數(shù)單位,若復(fù)數(shù),,則A. B.C. D.4.空氣質(zhì)量指數(shù)是反映空氣狀況的指數(shù),指數(shù)值趨小,表明空氣質(zhì)量越好,下圖是某市10月1日-20日指數(shù)變化趨勢(shì),下列敘述錯(cuò)誤的是()A.這20天中指數(shù)值的中位數(shù)略高于100B.這20天中的中度污染及以上(指數(shù))的天數(shù)占C.該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好D.總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好5.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問(wèn)題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國(guó)數(shù)學(xué)家潘承洞、王元、陳景潤(rùn)等在哥德巴赫猜想的證明中做出相當(dāng)好的成績(jī).若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.6.若數(shù)列滿足且,則使的的值為()A. B. C. D.7.已知函數(shù),滿足對(duì)任意的實(shí)數(shù),都有成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.8.已知全集,集合,則=()A. B.C. D.9.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.10.已知拋物線經(jīng)過(guò)點(diǎn),焦點(diǎn)為,則直線的斜率為()A. B. C. D.11.在正方體中,E是棱的中點(diǎn),F(xiàn)是側(cè)面內(nèi)的動(dòng)點(diǎn),且與平面的垂線垂直,如圖所示,下列說(shuō)法不正確的是()A.點(diǎn)F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值12.在中,為中點(diǎn),且,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開(kāi)式中,常數(shù)項(xiàng)為_(kāi)_______.(用數(shù)字作答)14.已知向量=(1,2),=(-3,1),則=______.15.若復(fù)數(shù)滿足,其中是虛數(shù)單位,是的共軛復(fù)數(shù),則________.16.已知不等式組所表示的平面區(qū)域?yàn)?,則區(qū)域的外接圓的面積為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對(duì),不等式恒成立,求的取值范圍.18.(12分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調(diào)遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據(jù):)19.(12分)已知在中,角、、的對(duì)邊分別為,,,,.(1)若,求的值;(2)若,求的面積.20.(12分)已知為等差數(shù)列,為等比數(shù)列,的前n項(xiàng)和為,滿足,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)令,數(shù)列的前n項(xiàng)和,求.21.(12分)近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:患心肺疾病不患心肺疾病合計(jì)男女合計(jì)已知在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為.(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為患心肺疾病與性別有關(guān)?請(qǐng)說(shuō)明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對(duì)身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進(jìn)行問(wèn)卷調(diào)查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.下面的臨界值表供參考:(參考公式,其中)22.(10分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
先化簡(jiǎn),再求.【詳解】因?yàn)?,又因?yàn)椋?,故選:C.【點(diǎn)睛】本題主要考查一元二次不等式的解法、集合的運(yùn)算,還考查了運(yùn)算求解能力,屬于基礎(chǔ)題.2、B【解析】
展開(kāi)式中含的項(xiàng)是由的展開(kāi)式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,由二項(xiàng)式的通項(xiàng),可得解【詳解】由題意,展開(kāi)式中含的項(xiàng)是由的展開(kāi)式中含和的項(xiàng)分別與前面的常數(shù)項(xiàng)和項(xiàng)相乘得到,所以的展開(kāi)式中含的項(xiàng)的系數(shù)為.故選:B【點(diǎn)睛】本題考查了二項(xiàng)式系數(shù)的求解,考查了學(xué)生綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.3、B【解析】
由可得,所以,故選B.4、C【解析】
結(jié)合題意,根據(jù)題目中的天的指數(shù)值,判斷選項(xiàng)中的命題是否正確.【詳解】對(duì)于,由圖可知天的指數(shù)值中有個(gè)低于,個(gè)高于,其中第個(gè)接近,第個(gè)高于,所以中位數(shù)略高于,故正確.對(duì)于,由圖可知天的指數(shù)值中高于的天數(shù)為,即占總天數(shù)的,故正確.對(duì)于,由圖可知該市月的前天的空氣質(zhì)量越來(lái)越好,從第天到第天空氣質(zhì)量越來(lái)越差,故錯(cuò)誤.對(duì)于,由圖可知該市月上旬大部分指數(shù)在以下,中旬大部分指數(shù)在以上,所以該市月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好,故正確.故選:【點(diǎn)睛】本題考查了對(duì)折線圖數(shù)據(jù)的分析,讀懂題意是解題關(guān)鍵,并能運(yùn)用所學(xué)知識(shí)對(duì)命題進(jìn)行判斷,本題較為基礎(chǔ).5、A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.6、C【解析】因?yàn)?,所以是等差?shù)列,且公差,則,所以由題設(shè)可得,則,應(yīng)選答案C.7、B【解析】
由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實(shí)數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實(shí)數(shù)的取值范圍是.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)的單調(diào)性求參數(shù),一般要分析每支函數(shù)的單調(diào)性,同時(shí)還要考慮分段點(diǎn)處函數(shù)值的大小關(guān)系,考查運(yùn)算求解能力,屬于中等題.8、D【解析】
先計(jì)算集合,再計(jì)算,最后計(jì)算.【詳解】解:,,.故選:.【點(diǎn)睛】本題主要考查了集合的交,補(bǔ)混合運(yùn)算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.9、C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個(gè)選項(xiàng)中雙曲線的漸近線方程,由此確定選項(xiàng).【詳解】?jī)蓷l漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時(shí)要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項(xiàng)漸近線為,B選項(xiàng)漸近線為,C選項(xiàng)漸近線為,D選項(xiàng)漸近線為.所以雙曲線的方程不可能為.故選:C【點(diǎn)睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.10、A【解析】
先求出,再求焦點(diǎn)坐標(biāo),最后求的斜率【詳解】解:拋物線經(jīng)過(guò)點(diǎn),,,,故選:A【點(diǎn)睛】考查拋物線的基礎(chǔ)知識(shí)及斜率的運(yùn)算公式,基礎(chǔ)題.11、C【解析】
分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進(jìn)行判斷.【詳解】對(duì)于,設(shè)平面與直線交于點(diǎn),連接、,則為的中點(diǎn)分別取、的中點(diǎn)、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點(diǎn)是線段上上的動(dòng)點(diǎn).正確.對(duì)于,平面平面,和平面相交,與是異面直線,正確.對(duì)于,由知,平面平面,與不可能平行,錯(cuò)誤.對(duì)于,因?yàn)椋瑒t到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點(diǎn)睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.12、B【解析】
選取向量,為基底,由向量線性運(yùn)算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,平面向量基本定理,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
的展開(kāi)式的通項(xiàng)為,取計(jì)算得到答案.【詳解】的展開(kāi)式的通項(xiàng)為:,取得到常數(shù)項(xiàng).故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.14、-6【解析】
由可求,然后根據(jù)向量數(shù)量積的坐標(biāo)表示可求.【詳解】∵=(1,2),=(-3,1),∴=(-4,-1),則=1×(-4)+2×(-1)=-6故答案為-6【點(diǎn)睛】本題主要考查了向量數(shù)量積的坐標(biāo)表示,屬于基礎(chǔ)試題.15、【解析】
設(shè),代入已知條件進(jìn)行化簡(jiǎn),根據(jù)復(fù)數(shù)相等的條件,求得的值.【詳解】設(shè),由,得,所以,所以.故答案為:【點(diǎn)睛】本小題主要考查共軛復(fù)數(shù),考查復(fù)數(shù)相等的條件,屬于基礎(chǔ)題.16、【解析】
先作可行域,根據(jù)解三角形得外接圓半徑,最后根據(jù)圓面積公式得結(jié)果.【詳解】由題意作出區(qū)域,如圖中陰影部分所示,易知,故,又,設(shè)的外接圓的半徑為,則由正弦定理得,即,故所求外接圓的面積為.【點(diǎn)睛】線性規(guī)劃問(wèn)題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開(kāi)放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離、可行域面積、可行域外接圓等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】
(1)分類討論,,,即可得出結(jié)果;(2)先由題意,將問(wèn)題轉(zhuǎn)化為即可,再求出,的最小值,解不等式即可得出結(jié)果.【詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當(dāng)時(shí),,所以;因?yàn)?,所以,解得,結(jié)合,所以的取值范圍是.【點(diǎn)睛】本題主要考查含絕對(duì)值不等式的解法,以及由不等式恒成立求參數(shù)的問(wèn)題,熟記分類討論的思想、以及絕對(duì)值不等式的性質(zhì)即可,屬于??碱}型.18、(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求導(dǎo),得,已知導(dǎo)函數(shù)單調(diào)遞增,又在區(qū)間上單調(diào)遞增,故,令,求得,討論得,而,故,進(jìn)而得解;(Ⅱ)可通過(guò)必要性探路,當(dāng)時(shí),由知,又由于,則,當(dāng),,結(jié)合零點(diǎn)存在定理可判斷必存在使得,得,,化簡(jiǎn)得,再由二次函數(shù)性質(zhì)即可求證;【詳解】(Ⅰ)的定義域?yàn)?易知單調(diào)遞增,由題意有.令,則.令得.所以當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調(diào)遞增,而,,因此必存在使得,即.且當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;則.綜上,的最大值為3.【點(diǎn)睛】本題考查導(dǎo)數(shù)的計(jì)算,利用導(dǎo)數(shù)研究函數(shù)的增減性和最值,屬于中檔題19、(1)7(2)14【解析】
(1)在中,,可得,結(jié)合正弦定理,即可求得答案;(2)根據(jù)余弦定理和三角形面積公式,即可求得答案.【詳解】(1)在中,,,,,,.(2),,,解得,.【點(diǎn)睛】本題主要考查了正弦定理和余弦定理解三角形,解題關(guān)鍵是掌握正弦定理邊化角,考查了分析能力和計(jì)算能力,屬于中檔題.20、(1),;(2).【解析】
(1)設(shè)的公差為,的公比為,由基本量法列式求出后可得通項(xiàng)公式;(2)奇數(shù)項(xiàng)分一組用裂項(xiàng)相消法求和,偶數(shù)項(xiàng)分一組用等比數(shù)列求和公式求和.【詳解】(1)設(shè)的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數(shù)時(shí),,為偶數(shù)時(shí),,∴.【點(diǎn)睛】本題考查求等差數(shù)列和等比數(shù)列的通項(xiàng)公式,考查分組求和法及裂項(xiàng)相消法、等差數(shù)列與等比數(shù)列的前項(xiàng)和公式,求通項(xiàng)公式采取的是基本量法,即求出公差、公比,由通項(xiàng)公式前項(xiàng)和公式得出相應(yīng)結(jié)論.?dāng)?shù)列求和問(wèn)題,對(duì)不是等差數(shù)列或等比數(shù)列的數(shù)列求和,需掌握一些特殊方法:錯(cuò)位相減法,裂項(xiàng)相消法,分組(并項(xiàng))求和法,倒序相加法等等.21、(1)列聯(lián)表見(jiàn)解析,有的把握認(rèn)為患心肺疾病與性別有關(guān),理由見(jiàn)解析;(2).【解析】
(1)結(jié)合題意完善列聯(lián)表,計(jì)算出的觀測(cè)值,對(duì)照臨界值表可得出結(jié)論;(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶外作業(yè)”所包含的基本事件數(shù),利用古典概型的概率公式可取得所求事件的概率.【詳解】(1)由于在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為,所以人中患心肺疾病的人數(shù)為人,故可將列聯(lián)表補(bǔ)充如下:患心肺疾病不患心肺疾病合計(jì)男女合計(jì).故有的把握認(rèn)為患心肺疾病與性別有關(guān);(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、.從中選取三人共有以下種情形:、、、、、、、、、.其中至少有一位從事的是戶外作業(yè)的有種情形,分別為:、、、、、、、、,所以所選的人中至少有一位從事的是戶外作業(yè)的概率為.【點(diǎn)睛】本題考查利用獨(dú)立性檢驗(yàn)的基本思想解決實(shí)際問(wèn)題,同時(shí)也考查了利用列舉法求解古典概型的概率問(wèn)題,考查計(jì)算能力,屬于中等題.22、(1)證明見(jiàn)解析
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 供暖承包合同
- 裝修總承包合同
- 標(biāo)識(shí)標(biāo)牌制作合同
- 數(shù)據(jù)存儲(chǔ)與分析服務(wù)合同
- 英文服務(wù)合同范本
- 精技術(shù)合作開(kāi)發(fā)合同
- 合同主體變更協(xié)議
- 房屋買賣居間合同簽訂注意事項(xiàng)
- 關(guān)于固定期限聘用合同
- 公對(duì)公的借款合同正規(guī)范本
- 宮頸癌后裝治療護(hù)理查房課件
- 員工內(nèi)部眾籌方案
- 復(fù)變函數(shù)與積分變換期末考試試卷及答案
- 初中班級(jí)成績(jī)分析課件
- 勞務(wù)合同樣本下載
- 聰明格練習(xí)題(初、中級(jí))
- 血液透析水處理系統(tǒng)演示
- 小批量試制總結(jié)報(bào)告
- 2023年經(jīng)濟(jì)開(kāi)發(fā)區(qū)工作會(huì)議表態(tài)發(fā)言
- YY/T 0216-1995制藥機(jī)械產(chǎn)品型號(hào)編制方法
- 糖尿病足與周圍血管病01課件
評(píng)論
0/150
提交評(píng)論