四川省西昌市2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第1頁(yè)
四川省西昌市2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第2頁(yè)
四川省西昌市2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第3頁(yè)
四川省西昌市2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第4頁(yè)
四川省西昌市2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

四川省西昌市2025屆高考仿真模擬數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,其中為自然對(duì)數(shù)的底數(shù),若存在實(shí)數(shù),使成立,則實(shí)數(shù)的值為()A. B. C. D.2.已知函數(shù),將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于軸對(duì)稱,則的最小值是()A. B. C. D.3.已知的展開(kāi)式中的常數(shù)項(xiàng)為8,則實(shí)數(shù)()A.2 B.-2 C.-3 D.34.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.5.已知函數(shù)是定義域?yàn)榈呐己瘮?shù),且滿足,當(dāng)時(shí),,則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為()A.9 B.10 C.18 D.206.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國(guó)古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”,這可視為中國(guó)古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.7.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.8.下列選項(xiàng)中,說(shuō)法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件9.設(shè)全集,集合,,則()A. B. C. D.10.已知函數(shù)f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數(shù))的圖象關(guān)于點(diǎn)(2,1)對(duì)稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.411.若函數(shù)的定義域?yàn)镸={x|-2≤x≤2},值域?yàn)镹={y|0≤y≤2},則函數(shù)的圖像可能是()A. B. C. D.12.某地區(qū)教育主管部門(mén)為了對(duì)該地區(qū)模擬考試成進(jìn)行分析,隨機(jī)抽取了200分到450分之間的2000名學(xué)生的成績(jī),并根據(jù)這2000名學(xué)生的成績(jī)畫(huà)出樣本的頻率分布直方圖,如圖所示,則成績(jī)?cè)?,?nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.1600二、填空題:本題共4小題,每小題5分,共20分。13.在二項(xiàng)式的展開(kāi)式中,的系數(shù)為_(kāi)_______.14.已知盒中有2個(gè)紅球,2個(gè)黃球,且每種顏色的兩個(gè)球均按,編號(hào),現(xiàn)從中摸出2個(gè)球(除顏色與編號(hào)外球沒(méi)有區(qū)別),則恰好同時(shí)包含字母,的概率為_(kāi)_______.15.如圖,在三棱錐A﹣BCD中,點(diǎn)E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點(diǎn)M,N分別在AE,CD上運(yùn)動(dòng)(不含端點(diǎn)),且AM=CN,則當(dāng)四面體C﹣EMN的體積取得最大值時(shí),三棱錐A﹣BCD的外接球的表面積為_(kāi)____.16.五聲音階是中國(guó)古樂(lè)基本音階,故有成語(yǔ)“五音不全”.中國(guó)古樂(lè)中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個(gè)音階全用上,排成一個(gè)五個(gè)音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成______種不同的音序.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列和滿足:.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的前項(xiàng)和.18.(12分)設(shè)數(shù)列是等比數(shù)列,,已知,(1)求數(shù)列的首項(xiàng)和公比;(2)求數(shù)列的通項(xiàng)公式.19.(12分)已知數(shù)列的前n項(xiàng)和為,且n、、成等差數(shù)列,.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)若數(shù)列中去掉數(shù)列的項(xiàng)后余下的項(xiàng)按原順序組成數(shù)列,求的值.20.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,建立極坐標(biāo)系.(1)設(shè)直線l的極坐標(biāo)方程為,若直線l與曲線C交于兩點(diǎn)A.B,求AB的長(zhǎng);(2)設(shè)M、N是曲線C上的兩點(diǎn),若,求面積的最大值.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點(diǎn)縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)寫(xiě)出的極坐標(biāo)方程與直線的直角坐標(biāo)方程;(2)曲線上是否存在不同的兩點(diǎn),(以上兩點(diǎn)坐標(biāo)均為極坐標(biāo),,),使點(diǎn)、到的距離都為3?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.22.(10分)在中,角的對(duì)邊分別為,且.(1)求角的大??;(2)若函數(shù)圖象的一條對(duì)稱軸方程為且,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數(shù),(﹣1,+∞)上是增函數(shù),故當(dāng)x=﹣1時(shí),y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當(dāng)且僅當(dāng)ex﹣a=4ea﹣x,即x=a+ln1時(shí),等號(hào)成立);故f(x)﹣g(x)≥3(當(dāng)且僅當(dāng)?shù)忍?hào)同時(shí)成立時(shí),等號(hào)成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.2、A【解析】

化簡(jiǎn)為,求出它的圖象向左平移個(gè)單位長(zhǎng)度后的圖象的函數(shù)表達(dá)式,利用所得到的圖象關(guān)于軸對(duì)稱列方程即可求得,問(wèn)題得解?!驹斀狻亢瘮?shù)可化為:,將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,又所得到的圖象關(guān)于軸對(duì)稱,所以,解得:,即:,又,所以.故選:A.【點(diǎn)睛】本題主要考查了兩角和的正弦公式及三角函數(shù)圖象的平移、性質(zhì)等知識(shí),考查轉(zhuǎn)化能力,屬于中檔題。3、A【解析】

先求的展開(kāi)式,再分類分析中用哪一項(xiàng)與相乘,將所有結(jié)果為常數(shù)的相加,即為展開(kāi)式的常數(shù)項(xiàng),從而求出的值.【詳解】展開(kāi)式的通項(xiàng)為,當(dāng)取2時(shí),常數(shù)項(xiàng)為,當(dāng)取時(shí),常數(shù)項(xiàng)為由題知,則.故選:A.【點(diǎn)睛】本題考查了兩個(gè)二項(xiàng)式乘積的展開(kāi)式中的系數(shù)問(wèn)題,其中對(duì)所取的項(xiàng)要進(jìn)行分類討論,屬于基礎(chǔ)題.4、D【解析】

根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點(diǎn)睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.5、B【解析】

由已知可得函數(shù)f(x)的周期與對(duì)稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結(jié)合即可得到答案.【詳解】函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)等價(jià)于函數(shù)f(x)與g(x)圖象在上交點(diǎn)的個(gè)數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關(guān)于x=1對(duì)稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當(dāng)x∈[0,1]時(shí),f(x)=x,且f(x)為偶函數(shù),∴當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個(gè)交點(diǎn),即函數(shù)F(x)=f(x)在區(qū)間上零點(diǎn)的個(gè)數(shù)為10.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,屬于中檔題.6、A【解析】

設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.7、B【解析】

由題中垂直關(guān)系,可得漸近線的方程,結(jié)合,構(gòu)造齊次關(guān)系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點(diǎn)睛】本題考查了雙曲線的漸近線和離心率,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.8、D【解析】

對(duì)于A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對(duì)于B若向量滿足,則與的夾角為鈍角或平角;對(duì)于C當(dāng)m=0時(shí),滿足am2≤bm2,但是a≤b不一定成立;對(duì)于D根據(jù)元素與集合的關(guān)系即可做出判斷.【詳解】選項(xiàng)A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項(xiàng)B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項(xiàng)C當(dāng)m=0時(shí),滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項(xiàng)D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點(diǎn)睛】本題考查命題的真假判斷與應(yīng)用,涉及知識(shí)點(diǎn)有含有量詞的命題的否定、不等式性質(zhì)、向量夾角與性質(zhì)、集合性質(zhì)等,屬于簡(jiǎn)單題.9、B【解析】

可解出集合,然后進(jìn)行補(bǔ)集、交集的運(yùn)算即可.【詳解】,,則,因此,.故選:B.【點(diǎn)睛】本題考查補(bǔ)集和交集的運(yùn)算,涉及一元二次不等式的求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.10、C【解析】

根據(jù)對(duì)稱性即可求出答案.【詳解】解:∵點(diǎn)(5,f(5))與點(diǎn)(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關(guān)于點(diǎn)(2,1)對(duì)稱,所以f(5)+f(﹣1)=2,故選:C.【點(diǎn)睛】本題主要考查函數(shù)的對(duì)稱性的應(yīng)用,屬于中檔題.11、B【解析】因?yàn)閷?duì)A不符合定義域當(dāng)中的每一個(gè)元素都有象,即可排除;對(duì)B滿足函數(shù)定義,故符合;對(duì)C出現(xiàn)了定義域當(dāng)中的一個(gè)元素對(duì)應(yīng)值域當(dāng)中的兩個(gè)元素的情況,不符合函數(shù)的定義,從而可以否定;對(duì)D因?yàn)橹涤虍?dāng)中有的元素沒(méi)有原象,故可否定.故選B.12、B【解析】

由圖可列方程算得a,然后求出成績(jī)?cè)趦?nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績(jī)?cè)趦?nèi)的學(xué)生人數(shù).【詳解】由頻率和為1,得,解得,所以成績(jī)?cè)趦?nèi)的頻率,所以成績(jī)?cè)趦?nèi)的學(xué)生人數(shù).故選:B【點(diǎn)睛】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、60【解析】

直接利用二項(xiàng)式定理計(jì)算得到答案.【詳解】二項(xiàng)式的展開(kāi)式通項(xiàng)為:,取,則的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.14、【解析】

根據(jù)組合數(shù)得出所有情況數(shù)及兩個(gè)球顏色不相同的情況數(shù),讓兩個(gè)球顏色不相同的情況數(shù)除以總情況數(shù)即為所求的概率.【詳解】從袋中任意地同時(shí)摸出兩個(gè)球共種情況,其中有種情況是兩個(gè)球顏色不相同;故其概率是故答案為:.【點(diǎn)睛】本題主要考查了求事件概率,解題關(guān)鍵是掌握概率的基礎(chǔ)知識(shí)和組合數(shù)計(jì)算公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.15、32π【解析】

設(shè)ED=a,根據(jù)勾股定理的逆定理可以通過(guò)計(jì)算可以證明出CE⊥ED.AM=x,根據(jù)三棱錐的體積公式,運(yùn)用基本不等式,可以求出AM的長(zhǎng)度,最后根據(jù)球的表面積公式進(jìn)行求解即可.【詳解】設(shè)ED=a,則CDa.可得CE2+DE2=CD2,∴CE⊥ED.當(dāng)平面ABD⊥平面BCD時(shí),當(dāng)四面體C﹣EMN的體積才有可能取得最大值,設(shè)AM=x.則四面體C﹣EMN的體積(a﹣x)a×xax(a﹣x),當(dāng)且僅當(dāng)x時(shí)取等號(hào).解得a=2.此時(shí)三棱錐A﹣BCD的外接球的表面積=4πa2=32π.故答案為:32π【點(diǎn)睛】本題考查了基本不等式的應(yīng)用,考查了球的表面積公式,考查了數(shù)學(xué)運(yùn)算能力和空間想象能力.16、1【解析】

按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個(gè)或第四個(gè)位置上,即可求出.【詳解】①若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時(shí)有種;②若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);③若“角”在第二個(gè)或第四個(gè)位置上,則有種;綜上,共有種.故答案為:1.【點(diǎn)睛】本題主要考查利用排列知識(shí)解決實(shí)際問(wèn)題,涉及分步計(jì)數(shù)乘法原理和分類計(jì)數(shù)加法原理的應(yīng)用,意在考查學(xué)生分類討論思想的應(yīng)用和綜合運(yùn)用知識(shí)的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)【解析】

(1)根據(jù)題目所給遞推關(guān)系式得到,由此證得數(shù)列為等比數(shù)列.(2)由(1)求得數(shù)列的通項(xiàng)公式,判斷出,由此利用裂項(xiàng)求和法求得數(shù)列的前項(xiàng)和.【詳解】(1)所以數(shù)列是以3為首項(xiàng),以3為公比的等比數(shù)列.(2)由(1)知,∴為常數(shù)列,且,∴,∴∴【點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查裂項(xiàng)求和法,屬于中檔題.18、(1)(2)【解析】

本題主要考查了等比數(shù)列的通項(xiàng)公式的求解,數(shù)列求和的錯(cuò)位相減求和是數(shù)列求和中的重點(diǎn)與難點(diǎn),要注意掌握.(1)設(shè)等比數(shù)列{an}的公比為q,則q+q2=6,解方程可求q(2)由(1)可求an=a1?qn-1=2n-1,結(jié)合數(shù)列的特點(diǎn),考慮利用錯(cuò)位相減可求數(shù)列的和解:(1)(2),兩式相減:19、(1)證明見(jiàn)解析,;(2)11202.【解析】

(1)由n,,成等差數(shù)列,可得,,兩式相減,由等比數(shù)列的定義可得是等比數(shù)列,可求數(shù)列的通項(xiàng)公式;(2)由(1)中的可求出,根據(jù)和求出數(shù)列,中的公共項(xiàng),分組求和,結(jié)合等比數(shù)列和等差數(shù)列的求和公式,可得答案.【詳解】(1)證明:因?yàn)閚,,成等差數(shù)列,所以,①所以.②①-②,得,所以.又當(dāng)時(shí),,所以,所以,故數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,所以,即.(2)根據(jù)(1)求解知,,,所以,所以數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列.又因?yàn)椋?,,,,,,,,,,所?【點(diǎn)睛】本題考查等比數(shù)列的定義,考查分組求和,屬于中檔題.20、(1);(2)1.【解析】

(1)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(2),,由(1)通過(guò)計(jì)算得到,即最大值為1.【詳解】(1)將曲線C的參數(shù)方程化為普通方程為,即;再將,,代入上式,得,故曲線C的極坐標(biāo)方程為,顯然直線l與曲線C相交的兩點(diǎn)中,必有一個(gè)為原點(diǎn)O,不妨設(shè)O與A重合

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論