版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023屆湖北省高三數(shù)學試題第三次質(zhì)量檢測試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)(其中,圖象的一個對稱中心為,,其相鄰一條對稱軸方程為,該對稱軸處所對應的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度2.已知函數(shù),若對任意,都有成立,則實數(shù)的取值范圍是()A. B. C. D.3.復數(shù)的虛部為()A. B. C.2 D.4.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值5.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.6.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.7.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.178.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則9.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.10.已知正項等比數(shù)列的前項和為,且,則公比的值為()A. B.或 C. D.11.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.12.已知集合,,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐中,,,,且二面角的大小為,則三棱錐外接球的表面積為__________.14.拋物線的焦點坐標為______.15.已知,,且,則最小值為__________.16.點P是△ABC所在平面內(nèi)一點且在△ABC內(nèi)任取一點,則此點取自△PBC內(nèi)的概率是____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線:.過點的直線:(為參數(shù))與曲線相交于,兩點.(1)求曲線的直角坐標方程和直線的普通方程;(2)若,求實數(shù)的值.18.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式對恒成立,求實數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,底面,,,,為的中點,是上的點.(1)若平面,證明:平面.(2)求二面角的余弦值.20.(12分)設函數(shù)(其中),且函數(shù)在處的切線與直線平行.(1)求的值;(2)若函數(shù),求證:恒成立.21.(12分)某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.方案一:每滿100元減20元;方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽取),所得結果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)紅球個數(shù)3210實際付款7折8折9折原價(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;(2)若某顧客購物金額為180元,選擇哪種方案更劃算?22.(10分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由函數(shù)的圖象的頂點坐標求出A,由周期求出,由五點法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導公式,得出結論.【詳解】根據(jù)已知函數(shù)其中,的圖象過點,,可得,,解得:.再根據(jù)五點法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個單位長度,可得的圖象,故選B.【點睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出,由五點法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導公式的應用,屬于中檔題.2.D【解析】
先將所求問題轉(zhuǎn)化為對任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點作函數(shù)的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數(shù)在不等式恒成立中的應用,考查了學生轉(zhuǎn)化與化歸思想以及數(shù)形結合的思想,是一道中檔題.3.D【解析】
根據(jù)復數(shù)的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復數(shù)的除法運算和復數(shù)的概念.4.B【解析】
根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.5.B【解析】
由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎題.6.A【解析】
依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結果?!驹斀狻恳驗闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A?!军c睛】本題主要考查無窮等比數(shù)列求和公式的應用。7.C【解析】
首先根據(jù)對數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數(shù)可以為8.故選:C【點睛】本題考查對數(shù)函數(shù)的性質(zhì)的應用,屬于基礎題.8.C【解析】
根據(jù)線面的位置關系,結合線面平行的判定定理、平行線的性質(zhì)進行判斷即可.【詳解】A:當時,也可以滿足∥,b∥,故本命題不正確;B:當時,也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當∥,,時,能得到,故本命題是正確的;D:當時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關系,考查了平行線的性質(zhì),考查了推理論證能力.9.D【解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【詳解】由題設有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.【點睛】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質(zhì)來考慮與焦點三角形有關的問題,本題屬于基礎題.10.C【解析】
由可得,故可求的值.【詳解】因為,所以,故,因為正項等比數(shù)列,故,所以,故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.11.D【解析】
選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數(shù)量積,解題關鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.12.D【解析】
因為,,所以,,故選D.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,將的長度求出或用球半徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,如圖所示因為,,所以,,,又二面角的大小為,則,,所以,設外接球半徑為R,則,,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點睛】本題考查三棱錐外接球的表面積問題,解決此類問題一定要數(shù)形結合,建立關于球的半徑的方程,本題計算量較大,是一道難題.14.【解析】
變換得到,計算焦點得到答案.【詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【點睛】本題考查了拋物線的焦點坐標,屬于簡單題.15.【解析】
首先整理所給的代數(shù)式,然后結合均值不等式的結論即可求得其最小值.【詳解】,結合可知原式,且,當且僅當時等號成立.即最小值為.【點睛】在應用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.16.【解析】
設是中點,根據(jù)已知條件判斷出三點共線且是線段靠近的三等分點,由此求得,結合幾何概型求得點取自三角形的概率.【詳解】設是中點,因為,所以,所以三點共線且點是線段靠近的三等分點,故,所以此點取自內(nèi)的概率是.故答案為:【點睛】本小題主要考查三點共線的向量表示,考查幾何概型概率計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2).【解析】
(1)將代入求解,由(為參數(shù))消去即可.(2)將(為參數(shù))與聯(lián)立得,設,兩點對應的參數(shù)為,,則,,再根據(jù),即,利用韋達定理求解.【詳解】(1)把代入,得,由(為參數(shù)),消去得,∴曲線的直角坐標方程和直線的普通方程分別是,.(2)將(為參數(shù))代入得,設,兩點對應的參數(shù)為,,則,,由得,所以,即,所以,而,解得.【點睛】本題主要考查參數(shù)方程、極坐標方程、直角坐標方程的轉(zhuǎn)化和直線參數(shù)方程的應用,還考查了運算求解的能力,屬于中檔題.18.(1)(2)【解析】
(1)按絕對值的定義分類討論去絕對值符號后解不等式;(2)不等式轉(zhuǎn)化為,求出在上的最小值即可,利用絕對值定義分類討論去絕對值符號后可求得函數(shù)最小值.【詳解】解:(1)或或解得或或無解綜上不等式的解集為.(2)時,,即所以只需在時恒成立即可令,由解析式得在上是增函數(shù),∴當時,即【點睛】本題考查解絕對值不等式,考查不等式恒成立問題,解決絕對值不等式的問題,分類討論是常用方法.掌握分類討論思想是解題關鍵.19.(1)證明見解析(2)【解析】
(1)因為,利用線面平行的判定定理可證出平面,利用點線面的位置關系,得出和,由于底面,利用線面垂直的性質(zhì),得出,且,最后結合線面垂直的判定定理得出平面,即可證出平面.(2)由(1)可知,,兩兩垂直,建立空間直角坐標系,標出點坐標,運用空間向量坐標運算求出所需向量,分別求出平面和平面的法向量,最后利用空間二面角公式,即可求出的余弦值.【詳解】(1)證明:因為,平面,平面,所以平面,因為平面,平面,所以可設平面平面,又因為平面,所以.因為平面,平面,所以,從而得.因為底面,所以.因為,所以.因為,所以平面.綜上,平面.(2)解:由(1)可得,,兩兩垂直,以為原點,,,所在直線分別為,,軸,建立如圖所示的空間直角坐標系.因為,所以,則,,,,所以,,,.設是平面的法向量,由取取,得.設是平面的法向量,由得取,得,所以,即的余弦值為.【點睛】本題考查線面垂直的判定和空間二面角的計算,還運用線面平行的性質(zhì)、線面垂直的判定定理、點線面的位置關系、空間向量的坐標運算等,同時考查學生的空間想象能力和邏輯推理能力.20.(1)(2)證明見解析【解析】
(1)求導得到,解得答案.(2)變形得到,令函數(shù),求導得到函數(shù)單調(diào)區(qū)間得到,,得到證明.【詳解】(1),,解得.(2)得,變形得,令函數(shù),,令解得,當時,時.函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,,而函數(shù)在區(qū)間上單調(diào)遞增,,,即,即,恒成立.【點睛】本題考查了根據(jù)切線求參數(shù),證明不等式,意在考查學生的計算能力和轉(zhuǎn)化能力,綜合應用能力.21.(1)(2)選擇方案二更為劃算【解析】
(1)計算顧客獲得7折優(yōu)惠的概率,獲得8折優(yōu)惠的概率,相加得到答案.(2)選擇方案二,記付款金額為元,則可取的值為126,144,162,180.,計算概率得到數(shù)學期望,比較大小得到答案.【詳解】(1)該顧客獲得7折優(yōu)惠的概率,該顧客獲得8折優(yōu)惠的概率,故該顧客獲得7折或8折優(yōu)惠的概率.(2)若選擇方案一,則付款金額為.若選擇方案二,記付
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江西師范高等??茖W校《商業(yè)空間展示》2023-2024學年第一學期期末試卷
- 嘉興學院《設計圖學》2023-2024學年第一學期期末試卷
- 衡陽幼兒師范高等??茖W校《俄語視聽說一》2023-2024學年第一學期期末試卷
- 淄博師范高等??茖W?!妒覂?nèi)設計原理》2023-2024學年第一學期期末試卷
- 重慶資源與環(huán)境保護職業(yè)學院《軟件項目管理與工程經(jīng)濟學實踐》2023-2024學年第一學期期末試卷
- 浙江師范大學行知學院《筆譯實務》2023-2024學年第一學期期末試卷
- 鄭州鐵路職業(yè)技術學院《抽樣技術與應用(實驗)》2023-2024學年第一學期期末試卷
- 長春信息技術職業(yè)學院《憲法學》2023-2024學年第一學期期末試卷
- 玉林師范學院《MATLAB語言及應用》2023-2024學年第一學期期末試卷
- 使用網(wǎng)格搜索進行超參數(shù)調(diào)優(yōu)
- 深圳2024-2025學年度四年級第一學期期末數(shù)學試題
- 中考語文復習說話要得體
- 《工商業(yè)儲能柜技術規(guī)范》
- 華中師范大學教育技術學碩士研究生培養(yǎng)方案
- 風浪流耦合作用下錨泊式海上試驗平臺的水動力特性試驗
- 高考英語語法專練定語從句含答案
- 有機農(nóng)業(yè)種植技術操作手冊
- 【教案】Unit+5+Fun+Clubs+大單元整體教學設計人教版(2024)七年級英語上冊
- 2024-2025學年四年級上冊數(shù)學人教版期末測評卷(含答案)
- 《霧化吸入療法合理用藥專家共識(2024版)》解讀
- 2024年招標代理保密協(xié)議
評論
0/150
提交評論