湖南省醴陵市2025屆高三第四次模擬考試數(shù)學試卷含解析_第1頁
湖南省醴陵市2025屆高三第四次模擬考試數(shù)學試卷含解析_第2頁
湖南省醴陵市2025屆高三第四次模擬考試數(shù)學試卷含解析_第3頁
湖南省醴陵市2025屆高三第四次模擬考試數(shù)學試卷含解析_第4頁
湖南省醴陵市2025屆高三第四次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省醴陵市2025屆高三第四次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.32.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β3.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點所在區(qū)間為()A. B. C. D.4.一個盒子里有4個分別標有號碼為1,2,3,4的小球,每次取出一個,記下它的標號后再放回盒子中,共取3次,則取得小球標號最大值是4的取法有()A.17種 B.27種 C.37種 D.47種5.根據(jù)黨中央關于“精準”脫貧的要求,我市某農業(yè)經濟部門派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一縣區(qū)的概率為()A. B. C. D.6.已知數(shù)列是公比為的正項等比數(shù)列,若、滿足,則的最小值為()A. B. C. D.7.若圓錐軸截面面積為,母線與底面所成角為60°,則體積為()A. B. C. D.8.中國古代數(shù)學著作《孫子算經》中有這樣一道算術題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.9.若等差數(shù)列的前項和為,且,,則的值為().A.21 B.63 C.13 D.8410.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.11.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.12.已知函數(shù),,若對,且,使得,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知四棱錐,底面四邊形為正方形,,四棱錐的體積為,在該四棱錐內放置一球,則球體積的最大值為_________.14.已知集合,若,且,則實數(shù)所有的可能取值構成的集合是________.15.的展開式中,的系數(shù)為____________.16.曲線f(x)=(x2+x)lnx在點(1,f(1))處的切線方程為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.18.(12分)已知曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)寫出曲線的極坐標方程;(2)點是曲線上的一點,試判斷點與曲線的位置關系.19.(12分)已知函數(shù).(Ⅰ)當時,求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調遞減,求實數(shù)的取值范圍.20.(12分)已知函數(shù).(1)當a=2時,求不等式的解集;(2)設函數(shù).當時,,求的取值范圍.21.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調遞增區(qū)間及圖象的對稱軸方程.22.(10分)在中,內角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數(shù)中的應用,考查學生分析問題的能力,難度較易.2、B【解析】

根據(jù)線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關知識判斷B選項的正確性.根據(jù)面面垂直的判定定理,判斷C選項的正確性.根據(jù)面面平行的性質判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.3、B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點存在性定理可知,函數(shù)g(x)的零點所在的區(qū)間是(0,1),故選B.4、C【解析】

由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標號均不為4的球的情況,進而求解.【詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標號最大值是4的取法有種,故選:C【點睛】本題考查古典概型,考查補集思想的應用,屬于基礎題.5、A【解析】

每個縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調研,每個縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.6、B【解析】

利用等比數(shù)列的通項公式和指數(shù)冪的運算法則、指數(shù)函數(shù)的單調性求得再根據(jù)此范圍求的最小值.【詳解】數(shù)列是公比為的正項等比數(shù)列,、滿足,由等比數(shù)列的通項公式得,即,,可得,且、都是正整數(shù),求的最小值即求在,且、都是正整數(shù)范圍下求最小值和的最小值,討論、取值.當且時,的最小值為.故選:B.【點睛】本題考查等比數(shù)列的通項公式和指數(shù)冪的運算法則、指數(shù)函數(shù)性質等基礎知識,考查數(shù)學運算求解能力和分類討論思想,是中等題.7、D【解析】

設圓錐底面圓的半徑為,由軸截面面積為可得半徑,再利用圓錐體積公式計算即可.【詳解】設圓錐底面圓的半徑為,由已知,,解得,所以圓錐的體積.故選:D【點睛】本題考查圓錐的體積的計算,涉及到圓錐的定義,是一道容易題.8、C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.9、B【解析】

由已知結合等差數(shù)列的通項公式及求和公式可求,,然后結合等差數(shù)列的求和公式即可求解.【詳解】解:因為,,所以,解可得,,,則.故選:B.【點睛】本題主要考查等差數(shù)列的通項公式及求和公式的簡單應用,屬于基礎題.10、B【解析】

根據(jù)函數(shù)單調性逐項判斷即可【詳解】對A,由正弦函數(shù)的單調性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數(shù),且a>b,所以ca>cb,正確對C,因為y=xc為增函數(shù),故,錯誤;對D,因為在為減函數(shù),故,錯誤故選B.【點睛】本題考查了不等式的基本性質以及指數(shù)函數(shù)的單調性,屬基礎題.11、B【解析】

取的中點,連接、,推導出,設設球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計算出球的半徑,再利用球體的表面積公式可得出結果.【詳解】取的中點,連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設球心為,和的中心分別為、.由球的性質可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.【點睛】本題考查三棱錐外接球表面積的計算,解題時要分析幾何體的結構,找出球心的位置,并以此計算出球的半徑長,考查推理能力與計算能力,屬于中等題.12、D【解析】

先求出的值域,再利用導數(shù)討論函數(shù)在區(qū)間上的單調性,結合函數(shù)值域,由方程有兩個根求參數(shù)范圍即可.【詳解】因為,故,當時,,故在區(qū)間上單調遞減;當時,,故在區(qū)間上單調遞增;當時,令,解得,故在區(qū)間單調遞減,在區(qū)間上單調遞增.又,且當趨近于零時,趨近于正無窮;對函數(shù),當時,;根據(jù)題意,對,且,使得成立,只需,即可得,解得.故選:D.【點睛】本題考查利用導數(shù)研究由方程根的個數(shù)求參數(shù)范圍的問題,涉及利用導數(shù)研究函數(shù)單調性以及函數(shù)值域的問題,屬綜合困難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設,由球與四棱錐的內切關系可知,設,用和表示四棱錐的體積,解得和的關系,進而表示出內切球的半徑,并求出半徑的最大值,進而求出球的體積的最大值.【詳解】設,,由球O內切于四棱錐可知,,,則,球O的半徑,,,,當且僅當時,等號成立,此時.故答案為:.【點睛】本題考查了棱錐的體積問題,內切球問題,考查空間想象能力,屬于較難的填空壓軸題.14、.【解析】

化簡集合,由,以及,即可求出結論.【詳解】集合,若,則的可能取值為,0,2,3,又因為,所以實數(shù)所有的可能取值構成的集合是.故答案為:.【點睛】本題考查集合與元素的關系,理解題意是解題的關鍵,屬于基礎題.15、16【解析】

要得到的系數(shù),只要求出二項式中的系數(shù)減去的系數(shù)的2倍即可【詳解】的系數(shù)為.故答案為:16【點睛】此題考查二項式的系數(shù),屬于基礎題.16、【解析】

求函數(shù)的導數(shù),利用導數(shù)的幾何意義即可求出切線方程.【詳解】解:∵,

∴,

則,

又,即切點坐標為(1,0),

則函數(shù)在點(1,f(1))處的切線方程為,

即,

故答案為:.【點睛】本題主要考查導數(shù)的幾何意義,根據(jù)導數(shù)和切線斜率之間的關系是解決本題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)取中點,連接,,通過證明,得,結合可證線面垂直,繼而可證面面垂直.(2)設,建立空間直角坐標系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點,連接,,由已知可得,,,∵側面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設,則,建立如圖所示空間直角坐標系,則,,,,,,,,設平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時,常建立空間直角坐標系,通過求面的法向量、線的方向向量,繼而求解.特別地,對于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個向量夾角的余弦值為線面角的正弦值.18、(1)(2)點在曲線外.【解析】

(1)先消參化曲線的參數(shù)方程為普通方程,再化為極坐標方程;(2)由點是曲線上的一點,利用的范圍判斷的范圍,即可判斷位置關系.【詳解】(1)由曲線的參數(shù)方程為可得曲線的普通方程為,則曲線的極坐標方程為,即(2)由題,點是曲線上的一點,因為,所以,即,所以點在曲線外.【點睛】本題考查參數(shù)方程與普通方程的轉化,考查直角坐標方程與極坐標方程的轉化,考查點與圓的位置關系.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)把代入,可得,令,求出其在上的值域,利用對數(shù)函數(shù)的單調性即可求解.(Ⅱ)根據(jù)對數(shù)函數(shù)的單調性可得在上單調遞增,再利用二次函數(shù)的圖像與性質可得解不等式組即可求解.【詳解】(Ⅰ)當時,,此時函數(shù)的定義域為.因為函數(shù)的最小值為.最大值為,故函數(shù)在上的值域為;(Ⅱ)因為函數(shù)在上單調遞減,故在上單調遞增,則解得,綜上所述,實數(shù)的取值范圍.【點睛】本題主要考查了利用對數(shù)函數(shù)的單調性求值域、利用對數(shù)型函數(shù)的單調區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖像與性質,屬于中檔題.20、(1);(2).【解析】試題分析:(1)當時;(2)由等價于,解之得.試題解析:(1)當時,.解不等式,得.因此,的解集為.(2)當時,,當時等號成立,所以當時,等價于.①當時,①等價于,無解.當時,①等價于,解得.所以的取值范圍是.考點:不等式選講.21、(1),;(2),,.【解析】

(1)直接利用同角三角函數(shù)關系式的變換的應用求出結果.(2)首先把函數(shù)的關系式變形成正弦型函數(shù),進一步利用正弦型函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論