版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省深圳市樂而思中心2024年高三下期中考試數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“”的否定是()A. B.C. D.2.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要3.已知復數滿足,則=()A. B.C. D.4.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.5.如圖,在中,,且,則()A.1 B. C. D.6.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.907.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直8.框圖與程序是解決數學問題的重要手段,實際生活中的一些問題在抽象為數學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數據的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,9.等差數列的前項和為,若,,則數列的公差為()A.-2 B.2 C.4 D.710.如圖是函數在區(qū)間上的圖象,為了得到這個函數的圖象,只需將的圖象上的所有的點()A.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變B.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變C.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變D.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變11.我國古代數學名著《九章算術》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺12.2020年是脫貧攻堅決戰(zhàn)決勝之年,某市為早日實現目標,現將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種二、填空題:本題共4小題,每小題5分,共20分。13.若,則________.14.已知,則的值為______.15.如圖所示,在正三棱柱中,是的中點,,則異面直線與所成的角為____.16.(5分)已知曲線的方程為,其圖象經過點,則曲線在點處的切線方程是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若在處導數相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點,求實數的取值范圍.18.(12分)已知函數,的最大值為.求實數b的值;當時,討論函數的單調性;當時,令,是否存在區(qū)間,,使得函數在區(qū)間上的值域為?若存在,求實數k的取值范圍;若不存在,請說明理由.19.(12分)已知為等差數列,為等比數列,的前n項和為,滿足,,,.(1)求數列和的通項公式;(2)令,數列的前n項和,求.20.(12分)已知數列的各項都為正數,,且.(Ⅰ)求數列的通項公式;(Ⅱ)設,其中表示不超過x的最大整數,如,,求數列的前2020項和.21.(12分)班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結果)(2)如果隨機抽取的7名同學的數學,物理成績(單位:分)對應如下表:學生序號1234567數學成績60657075858790物理成績70778085908693①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學中抽取3名同學,記3名同學中數學和物理成績均為優(yōu)秀的人數為,求的分布列和數學期望;②根據上表數據,求物理成績關于數學成績的線性回歸方程(系數精確到0.01);若班上某位同學的數學成績?yōu)?6分,預測該同學的物理成績?yōu)槎嗌俜??附:線性回歸方程,其中,.768381252622.(10分)已知.(1)若是上的增函數,求的取值范圍;(2)若函數有兩個極值點,判斷函數零點的個數.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.2、B【解析】
由線面關系可知,不能確定與平面的關系,若一定可得,即可求出答案.【詳解】,不能確定還是,,當時,存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【點睛】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.3、B【解析】
利用復數的代數運算法則化簡即可得到結論.【詳解】由,得,所以,.故選:B.【點睛】本題考查復數代數形式的乘除運算,考查復數的基本概念,屬于基礎題.4、D【解析】
如圖所示,過分別作于,于,利用和,聯(lián)立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據得到:,即,根據得到:,即,解得,,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.5、C【解析】
由題可,所以將已知式子中的向量用表示,可得到的關系,再由三點共線,又得到一個關于的關系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點睛】此題考查的是平面向量基本定理的有關知識,結合圖形尋找各向量間的關系,屬于中檔題.6、A【解析】
利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.7、D【解析】
根據異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據異面直線的性質知,過只有唯一平面與平行,故正確.C.根據過一點有且只有一個平面與已知直線垂直知,故正確.D.根據異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.8、A【解析】
依題意問題是,然后按直到型驗證即可.【詳解】根據題意為了計算7個數的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.9、B【解析】
在等差數列中由等差數列公式與下標和的性質求得,再由等差數列通項公式求得公差.【詳解】在等差數列的前項和為,則則故選:B【點睛】本題考查等差數列中求由已知關系求公差,屬于基礎題.10、A【解析】
由函數的最大值求出,根據周期求出,由五點畫法中的點坐標求出,進而求出的解析式,與對比結合坐標變換關系,即可求出結論.【詳解】由圖可知,,又,,又,,,為了得到這個函數的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點的橫坐標變?yōu)樵瓉淼模v坐標不變)即可.故選:A【點睛】本題考查函數的圖象求解析式,考查函數圖象間的變換關系,屬于中檔題.11、A【解析】
根據三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.12、B【解析】
分成甲單獨到縣和甲與另一人一同到縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數.【詳解】如果甲單獨到縣,則方法數有種.如果甲與另一人一同到縣,則方法數有種.故總的方法數有種.故選:B【點睛】本小題主要考查簡答排列組合的計算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】
由導函數的應用得:設,,所以,,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【詳解】解:設,,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【點睛】本題考查了導函數的應用、二項式定理,屬于中檔題14、【解析】
先求,再根據的范圍求出即可.【詳解】由題可知,故.故答案為:.【點睛】本題考查分段函數函數值的求解,涉及對數的運算,屬基礎題.15、【解析】
要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點E,連AE,,易證,∴為異面直線與所成角,設等邊三角形邊長為,易算得∴在∴故答案為【點睛】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應用典型的見中點找中點的方法,注意求角的三個環(huán)節(jié),一畫,二證,三求.16、【解析】
依題意,將點的坐標代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(I)見解析(II)【解析】
(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導數相等,得到,得,由韋達定理得,由基本不等式得,得,由題意得,令,則,令,,利用導數性質能證明.(2)由得,令,利用反證法可證明證明恒成立.由對任意,只有一個解,得為上的遞增函數,得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,,且當自變量充分大時,,所以存在,,使得,,取,則與至少有兩個交點,矛盾.由對任意,只有一個解,得為上的遞增函數,得,令,則,得【點睛】本題考查函數的單調性,導數的運算及其應用,同時考查邏輯思維能力和綜合應用能力屬難題.18、(1);(2)時,在單調增;時,在單調遞減,在單調遞增;時,同理在單調遞減,在單調遞增;(3)不存在.【解析】分析:(1)利用導數研究函數的單調性,可得當時,取得極大值,也是最大值,由,可得結果;(2)求出,分三種情況討論的范圍,在定義域內,分別令求得的范圍,可得函數增區(qū)間,求得的范圍,可得函數的減區(qū)間;(3)假設存在區(qū)間,使得函數在區(qū)間上的值域是,則,問題轉化為關于的方程在區(qū)間內是否存在兩個不相等的實根,進而可得結果.詳解:(1)由題意得,令,解得,當時,,函數單調遞增;當時,,函數單調遞減.所以當時,取得極大值,也是最大值,所以,解得.(2)的定義域為.①即,則,故在單調增②若,而,故,則當時,;當及時,故在單調遞減,在單調遞增.③若,即,同理在單調遞減,在單調遞增(3)由(1)知,所以,令,則對恒成立,所以在區(qū)間內單調遞增,所以恒成立,所以函數在區(qū)間內單調遞增.假設存在區(qū)間,使得函數在區(qū)間上的值域是,則,問題轉化為關于的方程在區(qū)間內是否存在兩個不相等的實根,即方程在區(qū)間內是否存在兩個不相等的實根,令,,則,設,,則對恒成立,所以函數在區(qū)間內單調遞增,故恒成立,所以,所以函數在區(qū)間內單調遞增,所以方程在區(qū)間內不存在兩個不相等的實根.綜上所述,不存在區(qū)間,使得函數在區(qū)間上的值域是.點睛:本題主要考查利用導數判斷函數的單調性以及函數的最值值,屬于難題.求函數極值、最值的步驟:(1)確定函數的定義域;(2)求導數;(3)解方程求出函數定義域內的所有根;(4)列表檢查在的根左右兩側值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數值與極值的大小.19、(1),;(2).【解析】
(1)設的公差為,的公比為,由基本量法列式求出后可得通項公式;(2)奇數項分一組用裂項相消法求和,偶數項分一組用等比數列求和公式求和.【詳解】(1)設的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數時,,為偶數時,,∴.【點睛】本題考查求等差數列和等比數列的通項公式,考查分組求和法及裂項相消法、等差數列與等比數列的前項和公式,求通項公式采取的是基本量法,即求出公差、公比,由通項公式前項和公式得出相應結論.數列求和問題,對不是等差數列或等比數列的數列求和,需掌握一些特殊方法:錯位相減法,裂項相消法,分組(并項)求和法,倒序相加法等等.20、(Ⅰ);(Ⅱ)4953【解析】
(Ⅰ)遞推公式變形為,由數列是正項數列,得到,根據數列是等比數列求通項公式;(Ⅱ),根據新定義和對數的運算分類討論數列的通項公式,并求前2020項和.【詳解】(Ⅰ)∵,∴,∴又∵數列的各項都為正數,∴,即.∴數列是以2為首項,2為公比的等比數列,∴.(Ⅱ)∵,∴,.∴數列的前2020項的和為.【點睛】本題考查根據數列的遞推公式求通項公式和數列的前項和,意在考查轉化與化歸的思想,計算能力,屬于中檔題型.21、(1)不同的樣本的個數為.(2)①分布列見解析,.②線性回歸方程為.可預測該同學的物理成績?yōu)?6分.【解析】
(1)按比例抽取即可,再用乘法原理計算不同的樣本數.(2)名學生中物理和數學都優(yōu)秀的有3名學生,任取3名學生,都優(yōu)秀的學生人數服從超幾何分布,故可得其概率分布列及其數學期望.而線性回歸方程的計算可用給出的公式計算,并利用得到的回歸方程預測該同學的物理成績.【詳解】(1)依據分層抽樣的方法,24名女同學中應抽取的人數為名,18名男同學中應抽取的人數為名,故不同的樣本的個數為.(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論