版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
廣東省汕頭市潮南實驗學校2024年高三下學期期末教學統(tǒng)一檢測試題數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是公比為的正項等比數(shù)列,若、滿足,則的最小值為()A. B. C. D.2.若不等式對于一切恒成立,則的最小值是()A.0 B. C. D.3.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.4.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.5.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.6.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.7.已知,且,則()A. B. C. D.8.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.9.設函數(shù)(,)是上的奇函數(shù),若的圖象關于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.10.當時,函數(shù)的圖象大致是()A. B.C. D.11.已知各項都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.12.已知雙曲線的左、右焦點分別為,,P是雙曲線E上的一點,且.若直線與雙曲線E的漸近線交于點M,且M為的中點,則雙曲線E的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的最小正周期是_______________,單調(diào)遞增區(qū)間是__________.14.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結果為的式子的序號是_____.15.平面向量,,(R),且與的夾角等于與的夾角,則.16.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦距是,點是橢圓上一動點,點是橢圓上關于原點對稱的兩點(與不同),若直線的斜率之積為.(Ⅰ)求橢圓的標準方程;(Ⅱ)是拋物線上兩點,且處的切線相互垂直,直線與橢圓相交于兩點,求的面積的最大值.18.(12分)設函數(shù),().(1)若曲線在點處的切線方程為,求實數(shù)a、m的值;(2)若對任意恒成立,求實數(shù)a的取值范圍;(3)關于x的方程能否有三個不同的實根?證明你的結論.19.(12分)已知等差數(shù)列中,,數(shù)列的前項和.(1)求;(2)若,求的前項和.20.(12分)設橢圓:的右焦點為,右頂點為,已知橢圓離心率為,過點且與軸垂直的直線被橢圓截得的線段長為3.(Ⅰ)求橢圓的方程;(Ⅱ)設過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線斜率的取值范圍.21.(12分)已知函數(shù).(1)若在上是減函數(shù),求實數(shù)的最大值;(2)若,求證:.22.(10分)在中,角的對邊分別為,且.(1)求角的大??;(2)已知外接圓半徑,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用等比數(shù)列的通項公式和指數(shù)冪的運算法則、指數(shù)函數(shù)的單調(diào)性求得再根據(jù)此范圍求的最小值.【詳解】數(shù)列是公比為的正項等比數(shù)列,、滿足,由等比數(shù)列的通項公式得,即,,可得,且、都是正整數(shù),求的最小值即求在,且、都是正整數(shù)范圍下求最小值和的最小值,討論、取值.當且時,的最小值為.故選:B.【點睛】本題考查等比數(shù)列的通項公式和指數(shù)冪的運算法則、指數(shù)函數(shù)性質(zhì)等基礎知識,考查數(shù)學運算求解能力和分類討論思想,是中等題.2、C【解析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,即可得到結論.解:不等式x2+ax+1≥0對一切x∈(0,]成立,等價于a≥-x-對于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點:不等式的應用點評:本題綜合考查了不等式的應用、不等式的解法等基礎知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題3、A【解析】
由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質(zhì),屬于基礎題.4、D【解析】
根據(jù)面面關系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.5、B【解析】
由題意得出的值,進而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計算較為方便,考查計算能力,屬于基礎題.6、D【解析】
根據(jù)題意畫出幾何關系,由四邊形的內(nèi)切圓面積求得半徑,結合四邊形面積關系求得與等量關系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關系如下圖所示:設四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質(zhì)的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.7、B【解析】分析:首先利用同角三角函數(shù)關系式,結合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關于的式子,代入從而求得結果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點睛:該題考查的是有關同角三角函數(shù)關系式以及倍角公式的應用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應用同角三角函數(shù)關系式求解,也可以結合三角函數(shù)的定義式求解.8、D【解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【詳解】由題設有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.【點睛】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質(zhì)來考慮與焦點三角形有關的問題,本題屬于基礎題.9、D【解析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.10、B【解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導數(shù)的應用以及數(shù)學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.11、A【解析】試題分析:設公差為或(舍),故選A.考點:等差數(shù)列及其性質(zhì).12、C【解析】
由雙曲線定義得,,OM是的中位線,可得,在中,利用余弦定理即可建立關系,從而得到漸近線的斜率.【詳解】根據(jù)題意,點P一定在左支上.由及,得,,再結合M為的中點,得,又因為OM是的中位線,又,且,從而直線與雙曲線的左支只有一個交點.在中.——①由,得.——②由①②,解得,即,則漸近線方程為.故選:C.【點睛】本題考查求雙曲線漸近線方程,涉及到雙曲線的定義、焦點三角形等知識,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、,,【解析】
化簡函數(shù)的解析式,利用余弦函數(shù)的圖象和性質(zhì)求解即可.【詳解】函數(shù),最小正周期,令,,可得,,所以單調(diào)遞增區(qū)間是,,.故答案為:,,,.【點睛】本題主要考查了二倍角的公式的應用,余弦函數(shù)的圖象與性質(zhì),屬于中檔題.14、①②③【解析】
由已知分別結合和差角的正切及正弦余弦公式進行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應用,屬于中檔試題.15、2【解析】試題分析:,與的夾角等于與的夾角,所以考點:向量的坐標運算與向量夾角16、【解析】
根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點睛】本題主要考查圓錐體的體積,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)設點的坐標,表達出直線的斜率之積,再根據(jù)三點均在橢圓上,根據(jù)橢圓的方程代入斜率之積的表達式列式求解即可.(Ⅱ)設直線的方程為,根據(jù)直線的斜率之積為可得,再聯(lián)立直線與橢圓的方程,表達出面積公式,再換元利用基本不等式求解即可.【詳解】(Ⅰ)設,,則,又,,故,即,故,又,故.故橢圓的標準方程為.(Ⅱ)設直線的方程為,,由,故,又,故,因為處的切線相互垂直故.故直線的方程為.聯(lián)立故.故,代入韋達定理有設,則.當且僅當時取等號.故的面積的最大值為.【點睛】本題主要考查了根據(jù)橢圓上的點坐標滿足的關系式求解橢圓基本量求方程的方法,同時也考查了拋物線的切線問題以及橢圓中面積的最值問題,需要根據(jù)導數(shù)的幾何意義求切線斜率,再換元利用基本不等式求解.屬于難題.18、(1),;(2);(3)不能,證明見解析【解析】
(1)求出,結合導數(shù)的幾何意義即可求解;(2)構造,則原題等價于對任意恒成立,即時,,利用導數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構造并進行求導,研究單調(diào)性,結合函數(shù)零點存在性定理證明即可.【詳解】(1),,曲線在點處的切線方程為,,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時,,,解得,當時,對任意,,,,,即在單調(diào)遞增,此時,實數(shù)的取值范圍為.(3)關于的方程不可能有三個不同的實根,以下給出證明:記,,則關于的方程有三個不同的實根,等價于函數(shù)有三個零點,,當時,,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個零點;當時,記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個零點,則至多有兩個單調(diào)區(qū)間,至多有兩個零點.因此,不可能有三個零點.關于的方程不可能有三個不同的實根.【點睛】本題考查了導數(shù)幾何意義的應用、利用導數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學思想,屬于難題.19、(1),;(2).【解析】
(1)由條件得出方程組,可求得的通項,當時,,可得,當時,,得出是以1為首項,2為公比的等比數(shù)列,可求得的通項;(2)由(1)可知,,分n為偶數(shù)和n為奇數(shù)分別求得.【詳解】(1)由條件知,,,當時,,即,當時,,是以1為首項,2為公比的等比數(shù)列,;(2)由(1)可知,,當n為偶數(shù)時,當n為奇數(shù)時,綜上,【點睛】本題考查等差數(shù)列和等比數(shù)列的通項的求得,以及其前n項和,注意分n為偶數(shù)和n為奇數(shù)兩種情況分別求得其數(shù)列的和,屬于中檔題.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由題意可得,,,解得即可求出橢圓的C的方程;(Ⅱ)由已知設直線l的方程為y=k(x-2),(k≠0),聯(lián)立直線方程和橢圓方程,化為關于x的一元二次方程,利用根與系數(shù)的關系求得B的坐標,再寫出MH所在直線方程,求出H的坐標,由BF⊥HF,解得.由方程組消去y,解得,由,得到,轉(zhuǎn)化為關于k的不等式,求得k的范圍.【詳解】(Ⅰ)因為過焦點且垂直于長軸的直線被橢圓截得的線段長為3,所以,因為橢圓離心率為,所以,又,解得,,,所以橢圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年社區(qū)健身器材維護與管理物業(yè)合同3篇
- 耐酸混凝土施工方案
- 水上打樁船施工方案
- 部編版七年級初一語文上冊《春》教學設計
- 2025年度商場商品陳列優(yōu)化升級合同4篇
- 年度社會救助及公益服務產(chǎn)業(yè)分析報告
- 年度天然氣脫硫除濕膜市場分析及競爭策略分析報告
- 商業(yè)地產(chǎn)2025年度租賃合同范本2篇
- 二零二五版高速公路工程勞務分包居間服務協(xié)議3篇
- 2025年版危險品運輸應急處理預案合同3篇
- 城市公共交通運營協(xié)議
- 2024年高考八省聯(lián)考地理適應性試卷附答案解析
- 足浴技師與店內(nèi)禁止黃賭毒協(xié)議書范文
- 2024-2030年中國光電干擾一體設備行業(yè)發(fā)展現(xiàn)狀與前景預測分析研究報告
- 湖南省岳陽市岳陽樓區(qū)2023-2024學年七年級下學期期末數(shù)學試題(解析版)
- 農(nóng)村自建房安全合同協(xié)議書
- 杜仲葉藥理作用及臨床應用研究進展
- 4S店售后服務6S管理新規(guī)制度
- 高性能建筑鋼材的研發(fā)與應用
- 無線廣播行業(yè)現(xiàn)狀分析
- 漢語言溝通發(fā)展量表(長表)-詞匯及手勢(8-16月齡)
評論
0/150
提交評論