六年級(jí)上冊(cè)數(shù)學(xué)培優(yōu)奧數(shù)講義-第18講 與圓有關(guān)的組合圖形2_第1頁
六年級(jí)上冊(cè)數(shù)學(xué)培優(yōu)奧數(shù)講義-第18講 與圓有關(guān)的組合圖形2_第2頁
六年級(jí)上冊(cè)數(shù)學(xué)培優(yōu)奧數(shù)講義-第18講 與圓有關(guān)的組合圖形2_第3頁
六年級(jí)上冊(cè)數(shù)學(xué)培優(yōu)奧數(shù)講義-第18講 與圓有關(guān)的組合圖形2_第4頁
六年級(jí)上冊(cè)數(shù)學(xué)培優(yōu)奧數(shù)講義-第18講 與圓有關(guān)的組合圖形2_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第18講與圓有關(guān)的組合圖形2知識(shí)與方法在進(jìn)行組合圖形的面積計(jì)算時(shí),要仔細(xì)觀察,認(rèn)真思考,不僅要看清組合圖形是由幾個(gè)基本單位組成的,還要找出圖中的隱蔽條件與已知條件以及要求的問題間的關(guān)系。初級(jí)挑戰(zhàn)1求圖中陰影部分的面積。(單位:厘米)思維點(diǎn)撥:觀察發(fā)現(xiàn),陰影部分的面積=()-()。答案:2×2-π×12=0.86(平方厘米)能力探索1如圖所示,圓的半徑為2厘米,∠AOC為直角,則圖中陰影部分的面積是多少?答案:3.14×2÷4-2÷2=1.14(平方厘米)初級(jí)挑戰(zhàn)2如圖,扇形AFB是一個(gè)圓心角為90的扇形,四邊形BCDE和AFBG都是正方形。那么圖中陰影部分的面積是多少?(單位:厘米)思路點(diǎn)撥:方法一:如下圖,連接AB,將陰影部分分為①②兩部分,分別計(jì)算出兩部分的面積,再相加即可。方法二:如圖,陰影部分的面積也可看成是三角形ACG的面積減去空白部分③的面積,分別算出這兩部分的面積,再相減即可。答案:[3.14×4÷4-4×4÷2]+3×4÷2=10.56(平方厘米)能力探索2如圖,邊長(zhǎng)為3cm與5cm的兩個(gè)正方形并排放在一起,在大正方形中畫一個(gè)以它的頂點(diǎn)B為圓心,邊長(zhǎng)為半徑的圓弧,則陰影部分的面積是多少?答案:(3+5)×3÷2+3.14×÷4-(3+5)×3÷2=19.625(平方厘米)中級(jí)挑戰(zhàn)1已知下圖中正方形的周長(zhǎng)是40厘米,圖中陰影部分的面積是多少?思維點(diǎn)撥:方法一:圖中陰影部分是由四個(gè)以正方形的邊長(zhǎng)為直徑的半圓相交而成的,因此可將陰影部分進(jìn)行分解再求。方法二:四個(gè)半圓加起來,減去一個(gè)正方形的面積,正好是陰影部分的面積。答案:正方形的邊長(zhǎng)a=40÷4=10(厘米)圓的半徑r=10÷2=5(厘米)方法一(連接正方形的對(duì)角線畫圓):3.14×52-10×5÷2=14.25(平方厘米),14.25×4=57(平方厘米)方法二:正方形的邊長(zhǎng)a=40÷4=10(厘米)圓的半徑r=10÷2=5(厘米)陰影部分面積:πr2÷2×4-a2=50π-100=157-100=57(平方厘米)能力探索2下圖中,正方形的邊長(zhǎng)是10厘米,求圖中陰影部分的面積。答案:方法一:8×[3.14×(10÷2)2×14?(10÷2)×(10÷2)×方法二:如下圖,把圖中8個(gè)扇形的面積加在一起,減去一個(gè)正方形的面積,正好是陰影部分的面積,而8個(gè)扇形的面積又正好等于兩個(gè)整圓的面積。中級(jí)挑戰(zhàn)2如圖所示,兩圓半徑都是1厘米,且圖中兩個(gè)陰影部分的面積相等。求長(zhǎng)方形ABO1O2的面積。思路引領(lǐng):如圖所示,因?yàn)閮蓚€(gè)圓的面積相等,所以這兩個(gè)扇形面積相等,長(zhǎng)方形中兩個(gè)空白部分的面積也相等;又因?yàn)閳D中兩個(gè)陰影部分的面積相等,所以扇形的面積等于長(zhǎng)方形面積的一半。答案:×3.14×12×2=3.14÷2=1.57(平方厘米)能力探索4如圖所示,圓的周長(zhǎng)為12.56厘米,A、C兩點(diǎn)把圓分成相等的兩段弧,陰影部分①的面積與陰影部分②的面積相等,求平行四邊形ABCD的面積。答案:直徑:12.56÷3.14=4(厘米)平行四邊形(圓)的面積:3.14×(4÷2)2=12.56(平方厘米)聰明泉概率我去參觀氣象站,看到許多預(yù)測(cè)天氣的最新儀器。參觀完畢,我問站長(zhǎng):“你說有百分之七十五的概率下雨時(shí),是怎樣計(jì)算出來的?”站長(zhǎng)不假思索答道:“那就是說,我們這里有四個(gè)人,其中三個(gè)認(rèn)為會(huì)下雨?!蓖卣固魬?zhàn)三角形ABC是直角三角形,陰影部分①的面積比陰影部分②的面積小28平方厘米。AB長(zhǎng)40厘米,BC長(zhǎng)厘米。思路引領(lǐng):從圖中可以看出陰影部分①加上空白部分的面積是半圓的面積,陰影部分②加上空白部分的面積是三角形ABC的面積。又已知①的面積比②的面積小28平方厘米,故半圓面積比三角形ABC的面積小28平方厘米。而半圓面積為3.14×()2×=628(平方厘米),所以三角形ABC的面積為628+28=656(平方厘米)。BC的長(zhǎng)為656×2÷40=32.8(厘米)。能力探索5下圖中甲比乙的面積大57平方厘米,求。答案:三角形的面積是:3.14×(20÷2)2÷2-57=100(平方厘米)的長(zhǎng)是:100×2÷20=10(厘米)課堂小測(cè)1、下圖是在直徑為16厘米的半圓中有一個(gè)半圓和一個(gè)等腰直角三角形,求圖中陰影部分的面積。答案:=43.36(平方厘米)2、求陰影部分的面積。(單位:厘米)答案:10×(10+12)÷2+3.14×÷4-10×(10+12)÷2=3.14×÷4=113.04(平方厘米)3、下圖正方形的邊長(zhǎng)是28厘米,求圖中陰影部分的面積。答案:(平方厘米)4、如圖,半圓的直徑是10厘米,陰影部分甲比乙的面積少1.25平方厘米。求三角形ABO的邊OA的長(zhǎng)。答案:因?yàn)殛幱安糠旨妆纫业拿娣e少1.25平方厘米,所以半圓面積比三角形ABO的面積少1.25平方厘米。半圓面積:3.14×÷2=39.25(平方厘米)三角形ABO的面積:39.25+1.25=40.5(平方厘米)OA長(zhǎng):2×40.5÷10=8.1(厘米)課后作業(yè)1、如圖所示,AB=BC=20厘米,求陰影部分的面積。答案:如圖,將陰影部分分成一個(gè)扇形和一個(gè)三角形。陰影部分的面積:×3.14×(20÷2)2+(20÷2)×(20÷2)÷2=3.14×25+50=78.5+50=128.5(平方厘米)答:陰影部分的面積為128.5平方厘米。2、右圖直角三角形三條邊分別長(zhǎng)12厘米,16厘米,20厘米,三個(gè)半圓分別以三條邊為直徑,求圖中陰影部分的面積。答案:(平方厘米)3、求圖中陰影部分的面積(單位:厘米)。答案:方法一:如圖添加輔助線,那么陰影部分面積等于半徑為6厘米圓的面積,加直角邊為6厘米的等腰直角三角形面積,減去底為6厘米高也為6厘米的三角形面積。6×6×3.14×EQ\F(1,4)+6×6÷2-6×6÷2=28.26(平方厘米)方法二:正方形面積為6×6=36(平方厘米)含陰影

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論