版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PRXLIFE2,043009(2024)
TransientlyIncreasedCoordinationinGeneRegulationDuringCellPhenotypicTransitions
WeikangWang
,
1,2,*
KeNi
,
3
,4
DantePoe
,
3
,4
andJianhuaXing4,
5,
6
,?
1CASKeyLaboratoryofTheoreticalPhysics,
InstituteofTheoreticalPhysics,
ChineseAcademyofSciences,
Beijing100190,China
2SchoolofPhysicalSciences,
UniversityofChineseAcademyofSciences,
Beijing100049,China
3JointCarnegieMellonUniversity-
UniversityofPittsburgh
Ph.D.PrograminComputationalBiology,Pittsburgh,Pennsylvania15213,USA
4DepartmentofComputationalandSystemsBiology,SchoolofMedicine,
UniversityofPittsburgh,
Pittsburgh,Pennsylvania15213,USA
5DepartmentofPhysicsandAstronomy,
UniversityofPittsburgh,
Pittsburgh,Pennsylvania15232,USA
6UPMC–HillmanCancerCenter,
UniversityofPittsburgh,
Pittsburgh,Pennsylvania15232,USA
畫
(Received11January2024;accepted30September2024;published5November2024)
Phenotypetransitionsoccurinmanybiologicalprocessessuchasdifferentiationandreprogramming.Afun-damentalquestionishowcellscoordinateswitchingofgeneexpressionclusters.Byanalyzingsingle-cellRNAsequencingdatawithintheframeworkoftransitionpaththeory,westudiedthegenome-wideexpressionprogramswitchingin?vedifferentcelltransitionprocesses.Foreachprocesswereconstructedareactioncoordinatedescribingthetransitionprogression,andweinferredthegeneregulatorynetworkalongthisreactioncoordinate.Inallprocessesweobservedacommonpattern:theoveralleffectivenumberandstrengthofregulationbetweendifferentcommunitiesincrease?rstandthendecrease.Thischangeisaccompaniedbysimilarchangesingeneregulatorynetworkfrustration—de?nedastheoverallcon?ictbetweentheregulationreceivedbygenesandtheirexpressionstates.Complementingpreviousstudiessuggestingthatbiologicalnetworksaremodularizedtocontainperturbationeffectslocally,ouranalysesonthe?vecelltransitionprocesseslikelyrevealageneralprinciple:duringacellphenotypictransition,intercommunityinteractionsincreasetoconcertedlycoordinateglobalgeneexpressionreprogrammingandcanalizetospeci?ccellphenotype,asWaddingtonvisioned.
DOI:
10.1103/PRXLife.2.043009
I.INTRODUCTION
Alastingtopicinscienceandengineeringisunderstandinghowadynamicalsystemtransitsfromonestableattractortoanewoneinthecorrespondingstatespace[
1]
.Oneimportanttypeoftransitionthathasgarneredincreasedinterestrecentlyisthetransitionbetweendifferentcellphenotypes.Thisin-terestispartlydrivenbytheavailabilityofgenome-widecharacterizationsofcellgeneexpressionstatesthroughoutthetransitionprocess,facilitatedbyadvancesinsingle-cellgenomicstechniques[
2
–
4]
.Acellisanonlineardynamicalsystemgovernedbyacomplexregulatorynetworkformedbymanyinteractinggenes,whichcanhavemultiplestableattractorscorrespondingtodifferentcellphenotypes
[5,6]
.Typically,alargenumberofphenotype-speci?cgenesmain-tainaspeci?cphenotypethroughmutualactivationwhilesuppressingexpressionofgenescorrespondingtootherexclu-sivephenotypes[
7]
.Insomesenseitresemblesaspinsystemsegregatingintoupwardanddownwarddomains.Whenacellphenotypictransitionoccurs,thegenesneedtoswitchtheir
*Contactauthor:wangwk@?Contactauthor:xing1@
PublishedbytheAmericanPhysicalSocietyunderthetermsofthe
CreativeCommonsAttribution4.0International
license.Furtherdistributionofthisworkmustmaintainattributiontotheauthor(s)andthepublishedarticle’stitle,journalcitation,andDOI.
expressionstatus,analogousto?ippingsomeupwardanddownwardspindomains[
8
,9]
.
Akeyquestionishowacellphenotypictransition,oracellstatetransitionprocessingeneral,proceeds.Answeringthisquestionrequiresexamininghowagenome-widegeneregulatorynetworkchangesduringacellphenotypictransi-tion[Fig.
1(a)]
.Thetransitionmaybesequentialinvolvingthedeactivationoflinks(e.g.,betweenpairsofgenes)intheregulatorynetworkthatde?nestheinitialphenotype,followedbytheactivationoflinksintheregulatorynetworkthatde?nesthe?nalphenotype.Forexample,ithasbeenobservedthatcellfatedecision-makingpreferentiallyoccursaftercellspassthroughtheMphase,wheretranscriptionfactorsdisassociatefromthecondensedchromatin,allowingtheresetofthecell-type-speci?cexpressionprogramatthetranscriptionlevel;then,intheG1phase,cellsrecruittranscriptionfactorstoactivatetheexpressionofgenesofthenewcelltype[
10]
.Alternatively,inaconcertedtransition,thedeactivationandactivationofregulatorynetworklinksmayhappenconcur-
rently[4,7,11]
.Figure
1(a)
summarizesqualitativelydifferentcharacteristicsofthesetwomechanisms.
Developmentsofsingle-cellRNAsequencing(scRNA-seq),alongwithadvancedanalysistools,havesigni?cantlyexpandedourunderstandingofcellphenotypictransitions
[12–
15]
.Duetoitsdestructivenature,scRNA-seqdataonlyprovidesnapshotinformationofcellstates.Consequently,pseudotimeanalysishasbeenwidelyusedtoorderthesam-pledcellstatesbasedontheirexpressionpro?les,utilizingtoolssuchasMonocle,Scanpy,andSeurat[
2
,12,14,16–
21]
.ArecentlydevelopedRNAvelocityformalism[
22
]leverages
2835-8279/2024/2(4)/043009(15)043009-1PublishedbytheAmericanPhysicalSociety
WANG,NI,POE,ANDXINGPRXLIFE2,043009(2024)
043009-2
FIG.1.Overviewoftheanalysispipeline.(a)Schematicplotofdynamicsofcellstateandunderlyinggeneregulatorynetworksduringcellphenotypictransition.Filledcirclesandemptycirclerepresentactivegenesandsilentgenesseparately.Colorsindicatemarkergenesofdifferentcellstates.Arrowsrepresentactivation,whilebluntarrowsrepresentinhibition.(b)Flowchartofsingle-celltrajectorysimulationandreactioncoordinatewithRNAvelocityanalysis.Left:single-cellRNAsequencingdata;middle:thecoloreddotswithanarrowarecellswiththeirRNAvelocities(differentcolorsindicatedifferentcelltypes);right:single-celltrajectorysimulation(cyanline)andreactioncoordinate(largecoloreddots)ofthecellphenotypictransitionprocess.GraydotsrepresentsinglecellandwhitelinesareboundariesofVoronoigridsgeneratedbyreactioncoordinatepoints.(c)Schematicplotofgeneregulatorynetworkanalyses.ThegeneregulatorynetworkisinferredfromRNAvelocityofscRNA-seqdata.Binarizationofgenesallowsanalysesonthevariationofgeneregulatorynetworkcommunity(left)andfrustration(right)duringcellphenotypictransition.Left:communityanalysisofgeneregulatorynetwork.Thedashedellipsesrepresentcommunities.Colorsindicatemarkergenesofdifferentcellstates(light-bluecirclesindicategenesareactiveininitialstates,andpurplecirclesindicategenesareactivein?nalstate).Right:frustrationingeneregulatorynetwork.Filledcircles(upwardsarrow)representactivegenes.Emptycircle(downwardsarrow)representsasilentgene.
thecopynumbersofunsplicedandsplicedmessengerRNAwithinasinglecelltoinferthetimederivativeofacellstateinthegeneexpressionspace,predictingthesingle-cellstateoverthenextfewhours.RNAvelocityhasbeenemployedforcellstatepredictionandhasrevealeddynamicinformationaboutcellphenotypictransitions,suchasdifferentiation.
TheseapplicationsofRNAvelocitieshaveinspirednumer-ousdevelopmentsaimedatfurtherimprovingtheaccuracyofRNAvelocityestimation[
23
–
26]
.
UsingvariousformsofRNAvelocitydata,Qiuetal.developedageneralDynamoframeworkthatintegratessingle-celldataanalyseswithcontinuousdynamicalsystems
TRANSIENTLYINCREASEDCOORDINATIONINGENE…PRXLIFE2,043009(2024)
043009-3
functionF(x)fromsnapshotsingle-celldataandperform
theory-basedmechanisticmodelingofcellularsystems[
27]
.Zhangetal.furtherdevelopedacomplementarydiscretemodelingframework,Graph-Dynamo,whichisconvenientfornumericalanalyses[
28]
.Inthiswork,byapplyingthesemodelingframeworksalongwithreactionratetheoriesandnetworksciencetheories,weanalyzedscRNA-seqdatasetsofseveralcellphenotypictransitionprocesses,andweuncov-eredsharedprinciplesonhowtheglobalreprogrammingofgeneexpressionproceeds.
II.RESULTS
A.AnalyzescRNA-seqdatawithintheframework
ofdynamicalsystemstheory
Dynamoisageneralframeworkforreconstructingaset
ofdynamicalequationsthatdescribehowacellstateevolves
overtimeusingsingle-celldataandtheinstantaneousve-
locitiesofcellstatechanges[
27]
.Inthisstudy,weused
splicing-basedRNAvelocities[
22
][seeMaterialsandMeth-
odsintheSupplementalMaterial(SM)[
29
]].Denotexas
acellstatevector,andassumethatitstemporalevolution
dt=F(x).WithDynamo,onecanconstructthevector?eld
xdescribedbyasetofdynamicalequationsgenericallyas
trajectorysimulationsusingthisfunction.
Topropagatesingle-celltrajectoriesinthehigh-dimensionalstatespace,weadoptedGraph-Dynamo[
28]
inthisstudytodiscretizethecontinuousdynamicalequationsasMarkoviantransitionsonadiscretegraphformedbysingle-celldatapoints(MaterialsandMethodsintheSM
[29])
.ThismethodutilizestheFokker-Planckequationformalismtomodelcellstatetransitionsonthedata-formedgraphnetwork,whichisinvariantunderrepresentationtransformationandpreservesthetopologicalanddynamicalpropertiesofthesystemdynamics.Thisdiscretizationcanberegardedasanextensionofdiscretizingdynamicalequationsonaregularlattice[
30
,31],typicallyusedinnumerical
simulations,toirregularlattices.Thelatterapproachleveragesthefactthatsingle-celldataresideinalow-dimensionalmanifoldthatcanbediscretizedbythedatapoints,bypassingthecurse-of-dimensionalityifaregularlatticeisused.Wethenappliedageneralized?nite-temperaturestringmethod(MaterialsandMethodsintheSM[
29
])[
32
]toanalyzethesimulatedsingle-celltrajectories.Thestringmethod,widelyusedforanalyzingtransitionpathsinchemicalreactions,essentiallyprovidesareactioncoordinate,acentralconceptinratetheories
[1]thatusesaone-dimensionalmanifold
tore?ectprogressionofthereactionprocess.Noticingthesimilaritybetweencellphenotypetransitionsandchemicalreactions[
7
],weutilizedareactioncoordinatetostudycellphenotypictransitions(SM2[
29
]).Weidenti?edaone-dimensionalreactioncoordinate[denotedby[r],whereristheindexofthediscretizedreactioncoordinate(usingaVoronoigrid)]tocharacterizetheprogressionofacellphenotypictransitionprocess[Fig.
1(b)]
.Inthecontextofcellphenotypictransitions,areactioncoordinatecanbeconceptuallyrelatedtoapseudotimetrajectoryusedinthesingle-cellgenomics?eld[
12
,14]
.
Withthereactioncoordinateidenti?ed,weaimedtoun-ravelhowthegeneexpressionprogramchangesalongthereactioncoordinateduringacellphenotypictransitionpro-cess.Toachievethisaim,wedevelopedaproceduretocoarse-grainacontinuousvector?eldintoadirectedgenereg-ulatorynetwork.First,tofacilitateanalysisoftheregulationprogramalongthereactioncoordinate,weemployedapartialleast-squaresregression(PLSR)combinedwithalocalfalsediscoverrate(LFDR)methodtocoarse-grainagenerallynon-linearvectorfunctionintoalinearmodel,Fi(x)→ΣjFijxj(MaterialsandMethodsintheSM[
29
]).HereFisamatrixwithFij>0ifgenejactivatesgenei,0fornoregulation,and<0forinhibition.Next,weidenti?edgenesshowingaswitchlikeexpressionchangeduringthephenotypetransition.Wefurthercoarse-grainedthecontinuousgeneexpressionstateofsuchageneiintodiscretestates,si=0forsilenceand1foractiveexpression[Fig.
1(c)]
.
Followingtheaboveprocedure,weobtainedadirectedgeneregulatorynetworkmodelforagivensystem,whichallowedapplicationofvariousmethodsdevelopedinnetworkscienceanalyses,suchascommunitydetection[Fig.
1(c)]
(MaterialsandMethodsintheSM[
29
]).Speci?cally,wede?nedthataneffectiveedgeexistsbetweenaregulatorygenejandatargetgeneiatacellstateifandonlyifFij0andsj=1.Thatis,theeffectivegeneregulatorynetworkiscell-state-speci?c.Wealsointroducedaconceptthataregulationisfrustratedatacellstateiftheregulationofgenej(withitsownexpressionstatesj=1)ongeneicontradictstheexpressionstateofgenei,i.e.,Fij<0andsi=1,orFij>0andsi=0.
B.DynamicalmodelreconstructedfromscRNA-seqdatadescribesdevelopmentofgranulelineageindentategyrus
Thedentategyrusislocatedinthehippocampusofthebrainandiscrucialformemoryformation[
33
,34]
.Duringneurogenesis,radialglia-likecellsdifferentiatethroughneuralintermediateprogenitorcells(nIPCs),neuroblast1and2,immaturegranulecells,andeventuallyintomaturegranulecells[Fig.
2(a)
][35]
.Severaltranscriptionfactors,suchasHes5,Sox2,andCREB,playimportantrolesatvariousstepsofthisprocess[
36]
.
UsingthedatasetofHochgerneretal.
[35]asinput,
weobtainedanarrayofreactioncoordinatepointsfromthesimulatedtrajectories[Fig.
2(b)
],whichre?ectthecontin-uousprogressionfromradialgliatogranulecellsthroughasetofintermediatecelltypes[Fig.
2(c)
][32,37,38]
.Fol-lowingthecoarse-grainingprocedure,weobtainedregulatoryrelationshipsamonggenes.TableS1listsexistinglitera-turesupportforsomeoftheinferredregulations,validatingourprocedureofinferringregulationrelationshipsfromthescRNA-seqdata.Forinstance,weidenti?edtheregulationofSMAD1onCD9,whichisakeypathwayinthedifferentiationprocess[
39]
.
C.Networkanalysesrevealincreaseoffrustrationandnetwork
heterogeneityduringtransition
Aconcerted,ratherthansequential,mechanismpredictsatransientincreaseingene-geneinteractions[Fig.
1(a)]
.Fordentategyrusdevelopment,thenumberofeffectiveedges
WANG,NI,POE,ANDXINGPRXLIFE2,043009(2024)
043009-4
FIG.2.AnalysesofscRNA-seqdataofdentategyrusneurogenesisrevealaconcertedtransitionmechanism.(a)scRNA-seqdataandRNAvelocity-basedtransitiongraphshowninthecellexpressionstatespace[showninthe2Dleadingprincipalcomponents(PCs)space].Eachdotrepresentsacell,andeachedgebetweentwodotsindicatesatransitionbetweencellstatescorrespondingtothetwocells.Colorrepresentscelltype.Arrowindicatesdirectionoftransition.(b)Atypicalsingle-celltrajectorysimulatedonthetransitiongraph,illustratedinthe2DleadingPCsspace.ThetrajectorystartsfromtheRadial-Gliacelltypeandtransitsintothegranulecelltype.Dotcolorrepresentstheprogressionofthetrajectory(frombluetored).(c)1Dreactioncoordinatereconstructedfromthesimulatedsingle-celltrajectories.Largecoloreddotsrepresentthereactioncoordinatepoints(startsfromblueandendsinred).Voronoigridsaregeneratedwiththereactioncoordinatepoints.Thesmalldotsarecellswithcolorindicatingcelltype.(d)Frustrationscorealongthereactioncoordinateofdentategyrusneurogenesis.Themeanandvarianceateachreactioncoordinatepointwerecalculatedusingk-nearest-neighboringcellsofthecorrespondingreactioncoordinatepointwithintheVoronoigrid.Thegreenviolinrepresentsdistributionandthedashedlineindicatestheaveragefrustrationscoreofrandomsamples.Notethatsomerandomstatesmaynotbebiologicallyaccessible.(e)Variationofdistributionofstateoverlapalongthereactioncoordinateofdentategyrusneurogenesis.Colorsofthedistributionscorrespondtothatofreactioncoordinatepoints.Thedistributionsofinitialand?nalreactioncoordinateareplottedwithadottedline.InsertedgraphistheFWHMofthedistributionsalongthereactioncoordinate.(f)Cell-speci?cvariationofthenumberofeffectiveintercommunityedges(representedwithcolor)inthegeneregulatorynetworkofeachsinglecell.(g)Evolutionofthenumberofeffectiveintercommunityedgesalongthereactioncoordinateduringdentategyrusneurogenesis.Eachnoderepresentsagene.Thecolorofthenodeindicatestheindexofthecommunity.Arrowsrepresentdirectionofregulation.ristheindexinthereactioncoordinate.(h)Schematicoftheconcertedmechanismforacellphenotypictransition.Thedashed-lineboxesrepresentcommunities.Filledcirclesrepresentactivegenesandemptycirclesrepresentsilentgenes.
TRANSIENTLYINCREASEDCOORDINATIONINGENE…PRXLIFE2,043009(2024)
043009-5
indeedincreasedinitiallyandthendecreasedalongthereactioncoordinate(Fig.S1a),supportingtheconcertedmechanismforthisprocess.
Inaconcertedmechanism,oneexpectsatransientcoex-pressionofgenesthatdonotcoexpressinastablephenotype,leadingtocon?ictbetweentheexpressionstateofageneandtheregulationactingonit.Weusedfrustrationtoquantifysuchcon?ictingregulations.Wede?nedtheoverallfrustrationscoreofacell-speci?cgeneregulatorynetworkasthefractionoffrustratededgesoutofalledgesintheentirenetworkofthecell[
40]
.Fordevelopmentofthegranulelineage,theaveragefrustrationscorealongthereactioncoordinateincreases?rst,reachingapeakcorrespondingtoneuroblastcells,andthendecreases[Fig.
2(d)
],consistentwiththeconcertedmecha-nismratherthanthesequentialmechanism.Forcomparison,wealsocalculatedthefrustrationscoreofrandomcellstates[greenviolinplotandthedashedlineinFig.
2(d)
].Bysettingthestateofeachgenetobe0or1randomly,wegeneratedmultiplerandomcellsstatesandobtainedtheirfrustrationscoredistribution.Thefrustrationscoreofthecellularsystemislowerintheinitialand?nalmetastablestatescomparedtothatoftherandomstates,butitreachesapeakvaluethatishigherduringthetransition.Theseresultsalignwithourexpectationthatthetransitionsarecoordinatedratherthanrandom.
Duringtransition,cellsneedtoexploreregionsofthestatespacerarelyexploredbycellsinastablephenotype,lead-ingtoincreasedcellstateheterogeneityduringtheprocess
[7]
.Weusedadistributionofstateoverlaptoquantifytheheterogeneityduringcellphenotypictransition.OriginallyusedinspinglassandBooleanstatemodelstocharacterizestatestructures[
8
,41],thestateoverlapisde?nedas
qab=
sampledinthesameVoronoigridcorrespondingtoareactioncoordinatepointi.Nisthenumberofgenes,andthesumisoverallthegenesincludedintheanalyses.Notethatqab=1
ifthestatevectorss=s,andqab=?1ifss.Lower
heterogeneitygivesanarrowerdistributionandahighermeanvalueofthestateoverlap.Figure
2(e)
showsthedistributionofstateoverlapPr(qab)calculatedateachreactioncoordinatepoint.Duringtransition,thedistributionalongthereactioncoordinateinitiallybecomesmoredispersive,anditsmeanvaluegraduallyapproaches0from1.Then,thedispersionnarrowsdownandreturnstoameanvaluecloseto1.Thistrendisapparentfromthevariationofthefullwidthathalf-maximum(FWHM)ofthePr(qab)alongthereactionco-ordinate[Fig.
2(e)
inserted].Thisre?ectsatemporalincreaseinheterogeneityduringthetransition.
Wealsoquanti?edgeneregulatorynetworkheterogeneity
[42,43].Networkheterogeneitymeasureshowhomogenously
theconnectionsaredistributedamongthegenes[
42]
.Highheterogeneityindicatesthecoexistenceofhubgeneswithhighconnectivityandgeneswithlowconnectivity.Thenet-workheterogeneityinitiallyincreases,reachingamaximuminneuroblastcells,andthendecreasesasthecellsapproachthematuregranulecellstate(Fig.S1b)[
42]
.Weobservedasimilarpatternusinganothertypeofheterogeneitycalleddegreeheterogeneity,whereahighervaluere?ectsamoreunevendistributionofthedegreeofgenesinageneregulatorynetwork.Thedegreeofageneisde?nedasthenumberof
connectionsthisgenehastoothergenes(Fig.S1c)[
43]
.Thisresultfurtherindicatesthattheobservedtrendisnotduetoaspeci?cchoiceofheterogeneitymeasure.
D.Reconstructedgeneregulatorynetworkreveals
increasedintercommunityinteractionsatanintermediate
stageoftransition
Toexaminethenatureoftheincreasedinteractions,wedividedtheinferredgeneregulatorynetworkintofourcom-munitiesusingtheLeidenmethod(MaterialsandMethodsintheSM[
29
])[
44
,45]
.Thenumberofeffectiveintracom-munityedgescorrelateswiththenumberofactivegenes(Fig.S1d).Wedidnotobserveauniversalpatternamongthefourcommunitiesregardinghowintracommunityinteractionschangealongthereactioncoordinate.Speci?cally,thenum-berofintracommunityedgesforcommunity0increases,forcommunity2decreases,whilethoseforcommunities1and3peakinthemiddle(Fig.S1dleft).Incontrast,thenumberofeffectiveintercommunityedges?rstincreasesandthendecreasesbetweenpairsofallfourcommunities[Fig.
2(f)]
.Theintercommunityinteractionstrengths,de?nedasthetotalnumberofeffectiveedgesbetweendifferentcommunities,arethestrongestatr=5[Fig.
2(g)]
.Thisvariationininter-communityeffectiveedgesdoesnotcorrelatewiththetotalnumberofactivegenes,withacorrelationcoef?cientonly0.26(Fig.S1e).
E.Theobservedpatternsarerobustwithdifferent
transitionmodels
Notethatareactioncoordinatere?ectsthesequenceofeventsduringthetransitions,primarilyusingthedirectionalinformationofcellstatetransitionswithoutreferringtotheactualratesofeachtransitionstep.Consequently,weexpectthatourconclusionshereareinsensitivetotheassumptionβi=1whileestimatingthesplicing-basedRNAvelocities.Tosupportthisexpectation,werepeatedtheaboveanalysesusinganotherdiscretetransitionmodelfromRNAvelocitiesbasedonacosinecorrelationkernelmethodofBergenetal.
[23],
whichiswidelyusedintheRNAvelocity?eld.Mathematicalanalyseshaveshownthatthecosinecorrelationkernelmethodasymptoticallykeepsthedirectionalinformationofaveloc-ityvectorbutcompletelylosesthemagnitudeinformation
[46]
.Theanalysesindeedproducedareactioncoordinate,andthepatternsofthefrustrationscoreandthenumberofeffectiveintercommunityedgeschangedalongthereactioncoordinatesimilartowhatwasobservedwithGraphDynamo(Fig.S2a-c).
Weperformedtheabovenetworkanalysesusing678bi-narizedgenes.GiventhatanscRNA-seqdatasetcantypicallybewellrepresentedasalow-dimensional(e.g.,<30)manifoldembeddedinthehigher-dimensionalgenespace,weexpectedthatthegenesselectedthroughtheaboveproceduresfaithfullyrepresentthedatamanifoldbasedonthecelebratedWhitneyembeddingtheorem[
47]
.Tofurtherruleoutthein?uenceofgeneselectioninoursubsequentanalyses,wealsoadoptedanadditionalproceduretodeterminethethresholdforbinarizinggenesthatdonotshowswitchlikebehavior(MaterialsandMethodsintheSM[
29
]).Forthedentategyrusneurogenesis
WANG,NI,POE,ANDXINGPRXLIFE2,043009(2024)
043009-6
FIG.3.Analysesonhematopoiesisdatasetrevealsfeaturesofaconcertedmechanism.(a)TransitiongraphofhematopoiesisbasedonRNAvelocity.Colorrepresentscelltype.Arrowindicatesthedirectionoftransition.(b)Reactioncoordinate(largecoloreddots,startsfromblueandendsinred)ofhematopoiesiswithcorrespondingVoronoigrids.Smalldotsrepresentcellswithcolorsindicatingcelltypes.
(c)Frustrationscorealongthereactioncoordinateinhematopoiesis.(d)Variationofdistributionofstateoverlapalongthereactioncoordinateinhematopoiesis.Colorsofthedistributionscorrespondtothatofreactioncoordinatepoints.Thedistributionsofinitialand?nalreactioncoordinateareplottedwithadottedline.InsertedgraphistheFWHMofthedistributionsalongthereactioncoordinate.(e)Cell-speci?cvariationofeffectiveintercommunityregulationinhematopoiesis.Colorrepresentsthenumberofeffectiveintercommunityedgeswithineachcellinthegeneregulatorynetwork.(f)Evolutionofthenumberofeffectiveintercommunityedgesalongthereactioncoordinateduringhematopoiesis.Eachnoderepresentsagene.Thecolorofthenodeindicatestheindexofthecommunity.Arrowsrepresentdirectionofregulation.ristheindexinthereactioncoordinate.
dataset,thisprocedurebinarizedallthe1960high-variancegenes.Theresultscomputedwiththesegenes(Fig.S3a)aresimilartothoseinFig.
2.
Insummary,theabovenetworkanalysessupportthecon-certedmechanism[Fig.
2(h)]
.Coexpressionofcon?ictinggenesleadstoincreasedintercommunityedges,andfrustratededges.Someofthegenestransientlyactashubgenes,leadingtoincreasednetworkheterogeneity.
F.R
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高考地理一輪復(fù)習(xí)第三部分區(qū)域可持續(xù)發(fā)展-重在綜合第三章區(qū)域自然資源的開發(fā)利用第31講流域的綜合開發(fā)學(xué)案新人教版
- DB42-T 2353-2024 公路隧道巖溶水文地質(zhì)勘察規(guī)程
- 集體倉(cāng)庫(kù)租賃合同(5篇)
- 二零二五年度餐廳后廚裝修設(shè)計(jì)與施工合同2篇
- 二零二五年度車輛質(zhì)押車輛保險(xiǎn)代理及租賃服務(wù)協(xié)議2篇
- 第8課《城鄉(xiāng)改革不斷深入》課件
- 2024年浙江金融職業(yè)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 醫(yī)療行業(yè)供需現(xiàn)狀與發(fā)展戰(zhàn)略規(guī)劃
- 2024年陽(yáng)泉市第二人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 2024年河南檢察職業(yè)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 2023年海南省三支一扶考試真題
- 風(fēng)機(jī)支吊架計(jì)算表
- 初級(jí)經(jīng)濟(jì)師考試經(jīng)濟(jì)基礎(chǔ)知識(shí)講義
- 2023年安徽省公務(wù)員錄用考試《行測(cè)》真題及答案解析
- 小學(xué)數(shù)學(xué)教學(xué)3000字(優(yōu)選11篇)
- 四川水泥廠土建工程基礎(chǔ)施工方案
- 新外研版高二英語(yǔ)選擇性必修二Unit2重點(diǎn)單詞短語(yǔ)歸納復(fù)習(xí)檢測(cè)(精編課件)
- 化妝品中的植物活性成分
- 圍棋初級(jí)死活常型
- GB/T 42065-2022綠色產(chǎn)品評(píng)價(jià)廚衛(wèi)五金產(chǎn)品
- 2023年新版藥品管理法試題及答案
評(píng)論
0/150
提交評(píng)論