版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023屆甘肅省蘭州市第四中學(xué)高三3月份網(wǎng)上考試數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,集合,則()A. B. C. D.2.若,滿足約束條件,則的最大值是()A. B. C.13 D.3.一輛郵車從地往地運送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發(fā)時,裝上發(fā)往后面地的郵件各1件,到達后面各地后卸下前面各地發(fā)往該地的郵件,同時裝上該地發(fā)往后面各地的郵件各1件,記該郵車到達,,…各地裝卸完畢后剩余的郵件數(shù)記為.則的表達式為().A. B. C. D.4.德國數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個關(guān)于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學(xué)家?天文學(xué)家明安圖(1692年-1765年)為提高我國的數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.5.的展開式中的一次項系數(shù)為()A. B. C. D.6.甲、乙、丙三人相約晚上在某地會面,已知這三人都不會違約且無兩人同時到達,則甲第一個到、丙第三個到的概率是()A. B. C. D.7.已知為定義在上的奇函數(shù),若當(dāng)時,(為實數(shù)),則關(guān)于的不等式的解集是()A. B. C. D.8.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.9.若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.己知函數(shù)若函數(shù)的圖象上關(guān)于原點對稱的點有2對,則實數(shù)的取值范圍是()A. B. C. D.11.已知正方體的棱長為1,平面與此正方體相交.對于實數(shù),如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結(jié)論中,一定正確的是A. B.C. D.12.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.變量滿足約束條件,則目標函數(shù)的最大值是____.14.已知橢圓的左、右焦點分別為、,過橢圓的右焦點作一條直線交橢圓于點、.則內(nèi)切圓面積的最大值是_________.15.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_____.16.角α的頂點在坐標原點,始邊與x軸的非負半軸重合,終邊經(jīng)過點P(1,2),則sin(π﹣α)的值是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(Ⅰ)當(dāng)時,求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當(dāng)時,的最大值為,求證:.18.(12分)如圖,在四棱錐中,底面是平行四邊形,平面,是棱上的一點,滿足平面.(Ⅰ)證明:;(Ⅱ)設(shè),,若為棱上一點,使得直線與平面所成角的大小為30°,求的值.19.(12分)在中,、、的對應(yīng)邊分別為、、,已知,,.(1)求;(2)設(shè)為中點,求的長.20.(12分)設(shè)數(shù)列是等差數(shù)列,其前項和為,且,.(1)求數(shù)列的通項公式;(2)證明:.21.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.22.(10分)某工廠生產(chǎn)一種產(chǎn)品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:(1)估計該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機抽取2件,假設(shè)其中至少有1件是標準長度產(chǎn)品的概率不小于0.8時,該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時,生產(chǎn)一件產(chǎn)品為標準長度的概率的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:∵,,∴,故選:C.【點睛】本題主要考查了對數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運算,屬于基礎(chǔ)題.2.C【解析】
由已知畫出可行域,利用目標函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【點睛】本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合的數(shù)學(xué)思想以及運算求解能力,屬于基礎(chǔ)題.3.D【解析】
根據(jù)題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數(shù)目,進而計算可得答案.【詳解】解:根據(jù)題意,該郵車到第站時,一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點睛】本題主要考查數(shù)列遞推公式的應(yīng)用,屬于中檔題.4.B【解析】
執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結(jié)果,故選:B.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,得到程序框圖的計算功能是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.5.B【解析】
根據(jù)多項式乘法法則得出的一次項系數(shù),然后由等差數(shù)列的前項和公式和組合數(shù)公式得出結(jié)論.【詳解】由題意展開式中的一次項系數(shù)為.故選:B.【點睛】本題考查二項式定理的應(yīng)用,應(yīng)用多項式乘法法則可得展開式中某項系數(shù).同時本題考查了組合數(shù)公式.6.D【解析】
先判斷是一個古典概型,列舉出甲、乙、丙三人相約到達的基本事件種數(shù),再得到甲第一個到、丙第三個到的基本事件的種數(shù),利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個到、丙第三個到有甲乙丙,共1種,所以甲第一個到、丙第三個到的概率是.故選:D【點睛】本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.7.A【解析】
先根據(jù)奇函數(shù)求出m的值,然后結(jié)合單調(diào)性求解不等式.【詳解】據(jù)題意,得,得,所以當(dāng)時,.分析知,函數(shù)在上為增函數(shù).又,所以.又,所以,所以,故選A.【點睛】本題主要考查函數(shù)的性質(zhì)應(yīng)用,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運算的核心素養(yǎng).8.C【解析】
根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎(chǔ)題.9.A【解析】
將整理成的形式,得到復(fù)數(shù)所對應(yīng)的的點,從而可選出所在象限.【詳解】解:,所以所對應(yīng)的點為在第一象限.故選:A.【點睛】本題考查了復(fù)數(shù)的乘法運算,考查了復(fù)數(shù)對應(yīng)的坐標.易錯點是誤把當(dāng)成進行計算.10.B【解析】
考慮當(dāng)時,有兩個不同的實數(shù)解,令,則有兩個不同的零點,利用導(dǎo)數(shù)和零點存在定理可得實數(shù)的取值范圍.【詳解】因為的圖象上關(guān)于原點對稱的點有2對,所以時,有兩個不同的實數(shù)解.令,則在有兩個不同的零點.又,當(dāng)時,,故在上為增函數(shù),在上至多一個零點,舍.當(dāng)時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因為有兩個不同的零點,所以,解得.又當(dāng)時,且,故在上存在一個零點.又,其中.令,則,當(dāng)時,,故為減函數(shù),所以即.因為,所以在上也存在一個零點.綜上,當(dāng)時,有兩個不同的零點.故選:B.【點睛】本題考查函數(shù)的零點,一般地,較為復(fù)雜的函數(shù)的零點,必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點存在定理說明零點的存在性,本題屬于難題.11.B【解析】
此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關(guān)系,考查空間想象能力,考查了學(xué)生靈活應(yīng)用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.12.D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識點有復(fù)數(shù)的乘除運算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.二、填空題:本題共4小題,每小題5分,共20分。13.5【解析】
分析:畫出可行域,平移直線,當(dāng)直線經(jīng)過時,可得有最大值.詳解:畫出束條件表示的可行性,如圖,由可得,可得,目標函數(shù)變形為,平移直線,當(dāng)直線經(jīng)過時,可得有最大值,故答案為.點睛:本題主要考查線性規(guī)劃中利用可行域求目標函數(shù)的最值,屬簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的定點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.14.【解析】令直線:,與橢圓方程聯(lián)立消去得,可設(shè),則,.可知,又,故.三角形周長與三角形內(nèi)切圓的半徑的積是三角形面積的二倍,則內(nèi)切圓半徑,其面積最大值為.故本題應(yīng)填.點睛:圓錐曲線中最值與范圍的求法有兩種:(1)幾何法:若題目的條件和結(jié)論能明顯體現(xiàn)幾何特征及意義,則考慮利用圖形性質(zhì)來解決,這就是幾何法.(2)代數(shù)法:若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù),則可首先建立起目標函數(shù),再求這個函數(shù)的最值,求函數(shù)最值的常用方法有配方法,判別式法,重要不等式及函數(shù)的單調(diào)性法等.15.【解析】
將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過作,過作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補角.在三角形中,,故.【點睛】本小題主要考查空間兩條直線所成角的余弦值的計算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.16.【解析】
計算sinα,再利用誘導(dǎo)公式計算得到答案.【詳解】由題意可得x=1,y=2,r,∴sinα,∴sin(π﹣α)=sinα.故答案為:.【點睛】本題考查了三角函數(shù)定義,誘導(dǎo)公式,意在考查學(xué)生的計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當(dāng)時,在上單調(diào)遞增.則函數(shù)在上的最小值是(2)當(dāng)時,令,即,令,即(i)當(dāng),即時,在上單調(diào)遞增,所以在上的最小值是(ii)當(dāng),即時,由的單調(diào)性可得在上的最小值是(iii)當(dāng),即時,在上單調(diào)遞減,在上的最小值是(Ⅲ)當(dāng)時,令,則是單調(diào)遞減函數(shù).因為,,所以在上存在,使得,即討論可得在上單調(diào)遞增,在上單調(diào)遞減.所以當(dāng)時,取得最大值是因為,所以由此可證試題解析:(Ⅰ)因為函數(shù),且,所以,所以所以,所以曲線在處的切線方程是,即(Ⅱ)因為函數(shù),所以(1)當(dāng)時,,所以在上單調(diào)遞增.所以函數(shù)在上的最小值是(2)當(dāng)時,令,即,所以令,即,所以(i)當(dāng),即時,在上單調(diào)遞增,所以在上的最小值是(ii)當(dāng),即時,在上單調(diào)遞減,在上單調(diào)遞增,所以在上的最小值是(iii)當(dāng),即時,在上單調(diào)遞減,所以在上的最小值是綜上所述,當(dāng)時,在上的最小值是當(dāng)時,在上的最小值是當(dāng)時,在上的最小值是(Ⅲ)因為函數(shù),所以所以當(dāng)時,令,所以是單調(diào)遞減函數(shù).因為,,所以在上存在,使得,即所以當(dāng)時,;當(dāng)時,即當(dāng)時,;當(dāng)時,所以在上單調(diào)遞增,在上單調(diào)遞減.所以當(dāng)時,取得最大值是因為,所以因為,所以所以18.(Ⅰ)證明見解析(Ⅱ)【解析】
(Ⅰ)由平面,可得,又因為是的中點,即得證;(Ⅱ)如圖建立空間直角坐標系,設(shè),計算平面的法向量,由直線與平面所成角的大小為30°,列出等式,即得解.【詳解】(Ⅰ)如圖,連接交于點,連接,則是平面與平面的交線,因為平面,故,又因為是的中點,所以是的中點,故.(Ⅱ)由條件可知,,所以,故以為坐標原點,為軸,為軸,為軸建立空間直角坐標系,則,,,,,,,設(shè),則,設(shè)平面的法向量為,則,即,故取因為直線與平面所成角的大小為30°所以,即,解得,故此時.【點睛】本題考查了立體幾何和空間向量綜合,考查了學(xué)生邏輯推理,空間想象,數(shù)學(xué)運算的能力,屬于中檔題.19.(1);(2).【解析】
(1)直接根據(jù)特殊角的三角函數(shù)值求出,結(jié)合正弦定理求出;(2)結(jié)合第一問的結(jié)論以及余弦定理即可求解.【詳解】解:(1)∵,且,∴,由正弦定理,∴,∵∴銳角,∴(2)∵,∴∴∴在中,由余弦定理得∴【點睛】本題主要考查了正弦定理和余弦定理的運用.考查了學(xué)生對三角函數(shù)基礎(chǔ)知識的綜合運用.20.(1)(2)見解析【解析】
(1)設(shè)數(shù)列的公差為,由,得到,再結(jié)合題干所給數(shù)據(jù)得到公差,即可求得數(shù)列的通項公式;(2)由(1)可得,再利用放縮法證明不等式即可;【詳解】解:(1)設(shè)數(shù)列的公差為,∵,∴,∴,∴.(2)∵,∴,∴.【點睛】本題考查等差數(shù)列的通項公式的計算,放縮法證明數(shù)列不等式,屬于中檔題.21.(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個復(fù)合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調(diào)性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- INPAQ Company Profile 20220621一級代理分銷經(jīng)銷KOYUELEC光與電子
- 2024年駕駛員之選:專業(yè)交通標志課件
- 2024年全球經(jīng)濟展望:疫情后的復(fù)蘇與挑戰(zhàn)
- 《青玉案元夕》教案革新:2024教育理念的融入
- 2024年《婚姻法》課件制作:精美設(shè)計助力法律教學(xué)效果提升
- 2024年高校PFC課件制作與實踐探討
- 2024年視覺表達與創(chuàng)意呈現(xiàn)培訓(xùn)教程
- 課件制作技巧:以2024年為時間節(jié)點解析《爐中煤》
- 2024年春季《青蛙寫詩》教案及教學(xué)反思
- 《網(wǎng)絡(luò)編程》課程設(shè)計要求
- 數(shù)據(jù)治理與數(shù)據(jù)中臺建設(shè)方案
- HG∕T 5248-2017 風(fēng)力發(fā)電機組葉片用環(huán)氧結(jié)構(gòu)膠粘劑
- 醫(yī)院感染監(jiān)測標準考試試題附有答案
- 高血壓病三級預(yù)防策略 醫(yī)學(xué)類模板 醫(yī)學(xué)課件
- DL∕T 523-2017 化學(xué)清洗緩蝕劑應(yīng)用性能評價指標及試驗方法
- 食品營養(yǎng)學(xué)選擇試題庫(附參考答案)
- 北師大版二年級數(shù)學(xué)上冊第五單元《2~5的乘法口訣》(大單元教學(xué)設(shè)計)
- 2024年入團知識考試題庫及答案
- 腫瘤化療導(dǎo)致的中性粒細胞減少診治中國專家共識(2023版)解讀
- 《新能源汽車概論》課件-6新能源汽車空調(diào)系統(tǒng)結(jié)構(gòu)及工作原理
- 2024年共青團入團考試題庫(附答案)
評論
0/150
提交評論