甘肅省武威十八中2023-2024學(xué)年高三畢業(yè)生二月調(diào)研數(shù)學(xué)試題試卷_第1頁
甘肅省武威十八中2023-2024學(xué)年高三畢業(yè)生二月調(diào)研數(shù)學(xué)試題試卷_第2頁
甘肅省武威十八中2023-2024學(xué)年高三畢業(yè)生二月調(diào)研數(shù)學(xué)試題試卷_第3頁
甘肅省武威十八中2023-2024學(xué)年高三畢業(yè)生二月調(diào)研數(shù)學(xué)試題試卷_第4頁
甘肅省武威十八中2023-2024學(xué)年高三畢業(yè)生二月調(diào)研數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

甘肅省武威十八中2023-2024學(xué)年高三畢業(yè)生二月調(diào)研數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則全集則下列結(jié)論正確的是()A. B. C. D.2.下列命題中,真命題的個數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.33.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.4.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.5.盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數(shù)恰好為5的概率是()A. B. C. D.6.已知拋物線上一點的縱坐標(biāo)為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.57.設(shè)函數(shù)的導(dǎo)函數(shù),且滿足,若在中,,則()A. B. C. D.8.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.9.設(shè)函數(shù)的定義域為,滿足,且當(dāng)時,.若對任意,都有,則的取值范圍是().A. B. C. D.10.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]11.已知橢圓的右焦點為F,左頂點為A,點P橢圓上,且,若,則橢圓的離心率為()A. B. C. D.12.若復(fù)數(shù)滿足,則()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是定義在上的函數(shù),且,對任意,若經(jīng)過點的一次函數(shù)與軸的交點為,且互不相等,則稱為關(guān)于函數(shù)的平均數(shù),記為.當(dāng)_________時,為的幾何平均數(shù).(只需寫出一個符合要求的函數(shù)即可)14.已知復(fù)數(shù)對應(yīng)的點位于第二象限,則實數(shù)的范圍為______.15.在中,角,,的對邊分別為,,.若;且,則周長的范圍為__________.16.已知直線與圓心為的圓相交于兩點,且,則實數(shù)的值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數(shù)列{an}(2)設(shè)cn=bnan,求數(shù)列18.(12分)已知與有兩個不同的交點,其橫坐標(biāo)分別為().(1)求實數(shù)的取值范圍;(2)求證:.19.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)設(shè)點,若直線與曲線相交于、兩點,求的值20.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.21.(12分)已知函數(shù),直線為曲線的切線(為自然對數(shù)的底數(shù)).(1)求實數(shù)的值;(2)用表示中的最小值,設(shè)函數(shù),若函數(shù)為增函數(shù),求實數(shù)的取值范圍.22.(10分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標(biāo)準(zhǔn)方程;(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補(bǔ),且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,,的斜率按某種排序能構(gòu)成等比數(shù)列?若能,求出的方程,若不能,請說理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

化簡集合,根據(jù)對數(shù)函數(shù)的性質(zhì),化簡集合,按照集合交集、并集、補(bǔ)集定義,逐項判斷,即可求出結(jié)論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關(guān)系,求解不等式是解題的關(guān)鍵,屬于基礎(chǔ)題.2、C【解析】

否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識進(jìn)行判斷.(2)當(dāng)一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經(jīng)過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.3、B【解析】

選B.考點:圓心坐標(biāo)4、B【解析】

根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計算能力,屬于中檔題5、B【解析】

由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數(shù)恰好為5的概率為:故選:B【點睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運算的能力,屬于中檔題.6、D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標(biāo)為,準(zhǔn)線方程為,因為點A的縱坐標(biāo)為4,所以點A到拋物線準(zhǔn)線的距離為,因為拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應(yīng)用拋物線定義和拋物線上點的性質(zhì)拋物線上的點到焦點的距離,考查學(xué)生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時經(jīng)常用到,可以簡化運算.7、D【解析】

根據(jù)的結(jié)構(gòu)形式,設(shè),求導(dǎo),則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【詳解】設(shè),所以,因為當(dāng)時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【點睛】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性,還考查了運算求解的能力,屬于中檔題.8、C【解析】

在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點睛】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.9、B【解析】

求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【詳解】當(dāng)時,,,,又,所以至少小于7,此時,令,得,解得或,結(jié)合圖象,故.故選:B.【點睛】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.10、B【解析】

先求出,得到,再結(jié)合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補(bǔ)集的定義及運算是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.11、C【解析】

不妨設(shè)在第一象限,故,根據(jù)得到,解得答案.【詳解】不妨設(shè)在第一象限,故,,即,即,解得,(舍去).故選:.【點睛】本題考查了橢圓的離心率,意在考查學(xué)生的計算能力.12、D【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由定義可知三點共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據(jù)題意,由定義可知:三點共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點睛】本題考查了兩點的斜率公式,考查了推理能力,考查了運算能力.本題關(guān)鍵是分析出三點共線.14、【解析】

由復(fù)數(shù)對應(yīng)的點,在第二象限,得,且,從而求出實數(shù)的范圍.【詳解】解:∵復(fù)數(shù)對應(yīng)的點位于第二象限,∴,且,∴,故答案為:.【點睛】本題主要考查復(fù)數(shù)與復(fù)平面內(nèi)對應(yīng)點之間的關(guān)系,解不等式,且是解題的關(guān)鍵,屬于基礎(chǔ)題.15、【解析】

先求角,再用余弦定理找到邊的關(guān)系,再用基本不等式求的范圍即可.【詳解】解:所以三角形周長故答案為:【點睛】考查正余弦定理、基本不等式的應(yīng)用以及三條線段構(gòu)成三角形的條件;基礎(chǔ)題.16、0或6【解析】

計算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據(jù)直線和圓的位置關(guān)系求參數(shù),意在考查學(xué)生的計算能力和轉(zhuǎn)化能力。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)an=(2)Tn【解析】

(1)利用an與Sn的遞推關(guān)系可以an的通項公式;P點代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點P(bn,bn+1則數(shù)列{bn(2)因為cn=b則13兩式相減得:23所以Tn【點睛】用遞推關(guān)系an=Sn-18、(1);(2)見解析【解析】

(1)利用導(dǎo)數(shù)研究的單調(diào)性,分析函數(shù)性質(zhì),數(shù)形結(jié)合,即得解;(2)構(gòu)造函數(shù),可證得:,,分析直線,與從左到右交點的橫坐標(biāo),在,處的切線即得解.【詳解】(1)設(shè)函數(shù),,令,令故在單調(diào)遞減,在單調(diào)遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調(diào)遞增.③設(shè)直線,與從左到右交點的橫坐標(biāo)依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標(biāo)依次為,.【點睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合,考查了學(xué)生數(shù)形結(jié)合,綜合分析,轉(zhuǎn)化劃歸,邏輯推理,數(shù)學(xué)運算的能力,屬于較難題.19、(1)的普通方程為,的直角坐標(biāo)方程為;(2).【解析】

(1)在曲線的參數(shù)方程中消去參數(shù)可得出曲線的普通方程,利用兩角和的正弦公式以及可將直線的極坐標(biāo)方程化為普通方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),并設(shè)點、所對應(yīng)的參數(shù)分別為、,利用韋達(dá)定理可求得的值.【詳解】(1)由,得,,曲線的普通方程為,由,得,直線的直角坐標(biāo)方程為;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入,得,則,設(shè)、兩點對應(yīng)參數(shù)分別為、,,,,,.【點睛】本題考查了參數(shù)方程、極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線參數(shù)方程幾何意義的應(yīng)用,考查計算能力,屬于中等題.20、(1)證明見解析(2)【解析】

(1)取中點,連結(jié),證明平面得到答案.(2)如圖所示,建立空間直角坐標(biāo)系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結(jié),,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標(biāo)系,則,可取為平面的一個法向量.設(shè)平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【點睛】本題考查了面面垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力.21、(1);(2).【解析】

試題分析:(1)先求導(dǎo),然后利用導(dǎo)數(shù)等于求出切點的橫坐標(biāo),代入兩個曲線的方程,解方程組,可求得;(2)設(shè)與交點的橫坐標(biāo)為,利用導(dǎo)數(shù)求得,從而,然后利用求得的取值范圍為.試題解析:(1)對求導(dǎo)得.設(shè)直線與曲線切于點,則,解得,所以的值為1.(2)記函數(shù),下面考察函數(shù)的符號,對函數(shù)求導(dǎo)得.當(dāng)時,恒成立.當(dāng)時,,從而.∴在上恒成立,故在上單調(diào)遞減.,∴,又曲線在上連續(xù)不間斷,所以由函數(shù)的零點存在性定理及其單調(diào)性知唯一的,使.∴;,,∴,從而,∴,由函數(shù)為增函數(shù),且曲線在上連續(xù)不斷知在,上恒成立.①當(dāng)時,在上恒成立,即在上恒成立,記,則,當(dāng)變化時,變化情況列表如下:

3

0

極小值

∴,故“在上恒成立”只需,即.②當(dāng)時,,當(dāng)時,在上恒成立,綜合①②知,當(dāng)時,函數(shù)為增函數(shù).故實數(shù)的取值范圍是考點:函數(shù)導(dǎo)數(shù)與不等式.【方法點晴】函數(shù)導(dǎo)數(shù)問題中,和切線有關(guān)的題目非常多,我們只要把握住關(guān)鍵點:一個是切點,一個是斜率,切點即在原來函數(shù)圖象上,也在切線上;斜率就是導(dǎo)數(shù)的值.根據(jù)這兩點,列方程組,就能解決.本題第二問我們采用分層推進(jìn)的策略,先求得的表達(dá)式,然后再求得的表達(dá)式,我們就可以利用導(dǎo)數(shù)這個工具來求的取值范圍了.22、(1);(2)不能,理由見解析【解析】

(1)設(shè),則,由此即可求出橢圓方程;(2)設(shè)直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論