2024屆甘肅省河西五市高三下學(xué)期入學(xué)考試數(shù)學(xué)試題_第1頁(yè)
2024屆甘肅省河西五市高三下學(xué)期入學(xué)考試數(shù)學(xué)試題_第2頁(yè)
2024屆甘肅省河西五市高三下學(xué)期入學(xué)考試數(shù)學(xué)試題_第3頁(yè)
2024屆甘肅省河西五市高三下學(xué)期入學(xué)考試數(shù)學(xué)試題_第4頁(yè)
2024屆甘肅省河西五市高三下學(xué)期入學(xué)考試數(shù)學(xué)試題_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023屆甘肅省河西五市高三下學(xué)期入學(xué)考試數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若為虛數(shù)單位,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,圖中復(fù)平面內(nèi)點(diǎn)表示復(fù)數(shù),則表示復(fù)數(shù)的點(diǎn)是()A.E B.F C.G D.H2.中國(guó)的國(guó)旗和國(guó)徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.3.中國(guó)古代用算籌來進(jìn)行記數(shù),算籌的擺放形式有縱橫兩種形式(如圖所示),表示一個(gè)多位數(shù)時(shí),像阿拉伯記數(shù)一樣,把各個(gè)數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,其中個(gè)位、百位、方位……用縱式表示,十位、千位、十萬位……用橫式表示,則56846可用算籌表示為()A. B. C. D.4.已知集合,則集合()A. B. C. D.5.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則6.已知等差數(shù)列的前項(xiàng)和為,若,則等差數(shù)列公差()A.2 B. C.3 D.47.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.8.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.9.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將的圖象上的所有的點(diǎn)()A.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變B.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變C.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?,縱坐標(biāo)不變D.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變10.函數(shù)的圖象可能為()A. B.C. D.11.設(shè)a=log73,,c=30.7,則a,b,c的大小關(guān)系是()A. B. C. D.12.下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若一個(gè)正四面體的棱長(zhǎng)為1,四個(gè)頂點(diǎn)在同一個(gè)球面上,則此球的表面積為_________.14.若存在直線l與函數(shù)及的圖象都相切,則實(shí)數(shù)的最小值為___________.15.為了抗擊新型冠狀病毒肺炎,某醫(yī)藥公司研究出一種消毒劑,據(jù)實(shí)驗(yàn)表明,該藥物釋放量與時(shí)間的函數(shù)關(guān)系為(如圖所示),實(shí)驗(yàn)表明,當(dāng)藥物釋放量對(duì)人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對(duì)房間進(jìn)行消毒,則在消毒后至少經(jīng)過______分鐘人方可進(jìn)入房間.16.若函數(shù)在和上均單調(diào)遞增,則實(shí)數(shù)的取值范圍為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知(1)若,且函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),且存在滿足,令函數(shù),試判斷零點(diǎn)的個(gè)數(shù)并證明.18.(12分)如圖,在三棱柱中,是邊長(zhǎng)為2的菱形,且,是矩形,,且平面平面,點(diǎn)在線段上移動(dòng)(不與重合),是的中點(diǎn).(1)當(dāng)四面體的外接球的表面積為時(shí),證明:.平面(2)當(dāng)四面體的體積最大時(shí),求平面與平面所成銳二面角的余弦值.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的值域;(2)的角的對(duì)邊分別為且,,求邊上的高的最大值.20.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.21.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(),將曲線向左平移2個(gè)單位長(zhǎng)度得到曲線.(1)求曲線的普通方程和極坐標(biāo)方程;(2)設(shè)直線與曲線交于兩點(diǎn),求的取值范圍.22.(10分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點(diǎn)在直線上.(Ⅰ)求的極坐標(biāo)方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內(nèi)接矩形的周長(zhǎng)的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

由于在復(fù)平面內(nèi)點(diǎn)的坐標(biāo)為,所以,然后將代入化簡(jiǎn)后可找到其對(duì)應(yīng)的點(diǎn).【詳解】由,所以,對(duì)應(yīng)點(diǎn).故選:C【點(diǎn)睛】此題考查的是復(fù)數(shù)與復(fù)平面內(nèi)點(diǎn)的對(duì)就關(guān)系,復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題.2.A【解析】

利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問題.【詳解】解:.故選:A【點(diǎn)睛】本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.3.B【解析】

根據(jù)題意表示出各位上的數(shù)字所對(duì)應(yīng)的算籌即可得答案.【詳解】解:根據(jù)題意可得,各個(gè)數(shù)碼的籌式需要縱橫相間,個(gè)位,百位,萬位用縱式表示;十位,千位,十萬位用橫式表示,用算籌表示應(yīng)為:縱5橫6縱8橫4縱6,從題目中所給出的信息找出對(duì)應(yīng)算籌表示為中的.故選:.【點(diǎn)睛】本題主要考查學(xué)生的合情推理與演繹推理,屬于基礎(chǔ)題.4.D【解析】

弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點(diǎn)睛】本題考查集合的定義,涉及到解絕對(duì)值不等式,是一道基礎(chǔ)題.5.C【解析】

根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個(gè)選項(xiàng)得到結(jié)果.【詳解】對(duì)于,若,則可能為平行或異面直線,錯(cuò)誤;對(duì)于,若,則可能為平行、相交或異面直線,錯(cuò)誤;對(duì)于,若,且,由面面垂直的判定定理可知,正確;對(duì)于,若,只有當(dāng)垂直于的交線時(shí)才有,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.6.C【解析】

根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點(diǎn)睛】本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.7.C【解析】

因?yàn)?,,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.8.C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.9.A【解析】

由函數(shù)的最大值求出,根據(jù)周期求出,由五點(diǎn)畫法中的點(diǎn)坐標(biāo)求出,進(jìn)而求出的解析式,與對(duì)比結(jié)合坐標(biāo)變換關(guān)系,即可求出結(jié)論.【詳解】由圖可知,,又,,又,,,為了得到這個(gè)函數(shù)的圖象,只需將的圖象上的所有向左平移個(gè)長(zhǎng)度單位,得到的圖象,再將的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼模v坐標(biāo)不變)即可.故選:A【點(diǎn)睛】本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關(guān)系,屬于中檔題.10.C【解析】

先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗(yàn)證求解.【詳解】因?yàn)?,所以是奇函?shù),故排除A,B,又,故選:C【點(diǎn)睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.11.D【解析】

,,得解.【詳解】,,,所以,故選D【點(diǎn)睛】比較不同數(shù)的大小,找中間量作比較是一種常見的方法.12.C【解析】

結(jié)合基本初等函數(shù)的奇偶性及單調(diào)性,結(jié)合各選項(xiàng)進(jìn)行判斷即可.【詳解】A:為非奇非偶函數(shù),不符合題意;B:在上不單調(diào),不符合題意;C:為偶函數(shù),且在上單調(diào)遞增,符合題意;D:為非奇非偶函數(shù),不符合題意.故選:C.【點(diǎn)睛】本小題主要考查函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

將四面體補(bǔ)成一個(gè)正方體,通過正方體的對(duì)角線與球的半徑的關(guān)系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補(bǔ)形成一個(gè)正方體,則正四面體的外接球與正方體的外接球表示同一個(gè)球,因?yàn)檎拿骟w的棱長(zhǎng)為1,所以正方體的棱長(zhǎng)為,設(shè)球的半徑為,因?yàn)榍虻闹睆绞钦襟w的對(duì)角線,即,解得,所以球的表面積為.【點(diǎn)睛】本題主要考查了有關(guān)求得組合體的結(jié)構(gòu)特征,以及球的表面積的計(jì)算,其中巧妙構(gòu)造正方體,利用正方體的外接球的直徑等于正方體的對(duì)角線長(zhǎng),得到球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.14.【解析】

設(shè)直線l與函數(shù)及的圖象分別相切于,,因?yàn)?,所以函?shù)的圖象在點(diǎn)處的切線方程為,即,因?yàn)椋院瘮?shù)的圖象在點(diǎn)處的切線方程為,即,因?yàn)榇嬖谥本€l與函數(shù)及的圖象都相切,所以,所以,令,設(shè),則,當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增,所以,所以實(shí)數(shù)的最小值為.15.240【解析】

(1)由時(shí),,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當(dāng)時(shí),,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對(duì)房間進(jìn)行消毒,則在消毒后至少經(jīng)過分鐘人方可進(jìn)入房間.故答案為:(1)2;(2)40【點(diǎn)睛】本題主要考查了分段函數(shù)的應(yīng)用,屬于中檔題.16.【解析】

化簡(jiǎn)函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可.【詳解】由知,當(dāng)時(shí),在和上單調(diào)遞增,在和上均單調(diào)遞增,,

,

的取值范圍為:.

故答案為:.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)函數(shù)有兩個(gè)零點(diǎn)和【解析】試題分析:(1)求導(dǎo)后根據(jù)函數(shù)在區(qū)間單調(diào)遞增,導(dǎo)函數(shù)大于或等于0(2)先判斷為一個(gè)零點(diǎn),然后再求導(dǎo),根據(jù),化簡(jiǎn)求得另一個(gè)零點(diǎn)。解析:(1)當(dāng)時(shí),,因?yàn)楹瘮?shù)在上單調(diào)遞增,所以當(dāng)時(shí),恒成立.[來源:Z&X&X&K]函數(shù)的對(duì)稱軸為.①,即時(shí),,即,解之得,解集為空集;②,即時(shí),即,解之得,所以③,即時(shí),即,解之得,所以綜上所述,當(dāng)函數(shù)在區(qū)間上單調(diào)遞增.(2)∵有兩個(gè)極值點(diǎn),∴是方程的兩個(gè)根,且函數(shù)在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減.∵∴函數(shù)也是在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減∵,∴是函數(shù)的一個(gè)零點(diǎn).由題意知:∵,∴,∴∴,∴又=∵是方程的兩個(gè)根,∴,,∴∵函數(shù)圖像連續(xù),且在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),∴函數(shù)有兩個(gè)零點(diǎn)和.18.(1)證明見解析(2)【解析】

(1)由題意,先求得為的中點(diǎn),再證明平面平面,進(jìn)而可得結(jié)論;(2)由題意,當(dāng)點(diǎn)位于點(diǎn)時(shí),四面體的體積最大,再建立空間直角坐標(biāo)系,利用空間向量運(yùn)算即可.【詳解】(1)證明:當(dāng)四面體的外接球的表面積為時(shí).則其外接球的半徑為.因?yàn)闀r(shí)邊長(zhǎng)為2的菱形,是矩形.,且平面平面.則,.則為四面體外接球的直徑.所以,即.由題意,,,所以.因?yàn)?,所以為的中點(diǎn).記的中點(diǎn)為,連接,.則,,,所以平面平面.因?yàn)槠矫妫云矫?(2)由題意,平面,則三棱錐的高不變.當(dāng)四面體的體積最大時(shí),的面積最大.所以當(dāng)點(diǎn)位于點(diǎn)時(shí),四面體的體積最大.以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系.則,,,,.所以,,,.設(shè)平面的法向量為.則令,得.設(shè)平面的一個(gè)法向量為.則令,得.設(shè)平面與平面所成銳二面角是,則.所以當(dāng)四面體的體積最大時(shí),平面與平面所成銳二面角的余弦值為.【點(diǎn)睛】本題考查平面與平面的平行、線面平行,考查平面與平面所成銳二面角的余弦值,正確運(yùn)用平面與平面的平行、線面平行的判定,利用好空間向量是關(guān)鍵,屬于基礎(chǔ)題.19.(1).(2)【解析】

(1)由題意利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域,得出結(jié)論.(2)由題意利用余弦定理?三角形的面積公式?基本不等式求得的最大值,可得邊上的高的最大值.【詳解】解:(1)∵函數(shù),當(dāng)時(shí),,.(2)中,,∴.由余弦定理可得,當(dāng)且僅當(dāng)時(shí),取等號(hào),即的最大值為3.再根據(jù),故當(dāng)取得最大值3時(shí),取得最大值為.【點(diǎn)睛】本題考查降冪公式、兩角和的正弦公式,考查正弦函數(shù)的性質(zhì),余弦定理,三角形面積公式,所用公式較多,選用恰當(dāng)?shù)墓绞墙忸}關(guān)鍵,本題屬于中檔題.20.(Ⅰ)詳見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結(jié)論;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求的平面的一個(gè)法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點(diǎn),故OG//BE,BE面BEF,OG在面BEF外,所以O(shè)G//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點(diǎn)O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)C、OD、OF為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.21.(1)的極坐標(biāo)方程為,普通方程為;(2)【解析】

(1)根據(jù)三角函數(shù)恒等變換可得,,可得曲線的普通方程,再運(yùn)用圖像的平移得依題意得曲線的普通方程為,利用極坐標(biāo)與平面直角坐標(biāo)互化的公式可得方程;(2)法一:將代入曲線的極坐標(biāo)方程得,運(yùn)用韋達(dá)定理可得,根據(jù),可求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論