遼寧省葫蘆島建昌縣聯(lián)考2024年中考數(shù)學(xué)仿真試卷含解析_第1頁
遼寧省葫蘆島建昌縣聯(lián)考2024年中考數(shù)學(xué)仿真試卷含解析_第2頁
遼寧省葫蘆島建昌縣聯(lián)考2024年中考數(shù)學(xué)仿真試卷含解析_第3頁
遼寧省葫蘆島建昌縣聯(lián)考2024年中考數(shù)學(xué)仿真試卷含解析_第4頁
遼寧省葫蘆島建昌縣聯(lián)考2024年中考數(shù)學(xué)仿真試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

遼寧省葫蘆島建昌縣聯(lián)考2024年中考數(shù)學(xué)仿真試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,點C為弧BD的中點,若∠DAB=50°,則∠ABC的大小是()A.55° B.60° C.65° D.70°2.如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM=()A. B.1 C. D.3.下列計算正確的是()A.3a2﹣6a2=﹣3B.(﹣2a)?(﹣a)=2a2C.10a10÷2a2=5a5D.﹣(a3)2=a64.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A.正五邊形B.平行四邊形C.矩形D.等邊三角形5.在下列實數(shù)中,﹣3,,0,2,﹣1中,絕對值最小的數(shù)是()A.﹣3 B.0 C. D.﹣16.運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(

)A. B. C. D.7.已知二次函數(shù)的圖象如圖所示,若,是這個函數(shù)圖象上的三點,則的大小關(guān)系是()A. B. C. D.8.在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點叫做整點.對于一條直線,當(dāng)它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.109.二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=﹣x的圖象如圖所示,則方程ax2+(b+)x+c=0(a≠0)的兩根之和()A.大于0 B.等于0 C.小于0 D.不能確定10.如圖,數(shù)軸上有M、N、P、Q四個點,其中點P所表示的數(shù)為a,則數(shù)-3a所對應(yīng)的點可能是()A.M B.N C.P D.Q二、填空題(本大題共6個小題,每小題3分,共18分)11.把16a3﹣ab2因式分解_____.12.如圖,某數(shù)學(xué)興趣小組將邊長為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形ABD的面積為_____.13.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正確的是_____.14.已知n>1,M=,N=,P=,則M、N、P的大小關(guān)系為.15.如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+4x與x軸交于點A,點M是x軸上方拋物線上一點,過點M作MP⊥x軸于點P,以MP為對角線作矩形MNPQ,連結(jié)NQ,則對角線NQ的最大值為_________.16.計算:=_________

.三、解答題(共8題,共72分)17.(8分)如圖,在直角三角形ABC中,(1)過點A作AB的垂線與∠B的平分線相交于點D(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)若∠A=30°,AB=2,則△ABD的面積為.18.(8分)如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.(1)求證:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.19.(8分)已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數(shù)y=ax2+bx的解析式;(2)若當(dāng)-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.20.(8分)某一天,水果經(jīng)營戶老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當(dāng)天的批發(fā)價和零售價如表所示:品名獼猴桃芒果批發(fā)價元千克2040零售價元千克2650他購進的獼猴桃和芒果各多少千克?如果獼猴桃和芒果全部賣完,他能賺多少錢?21.(8分)如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),且)的圖象交于A(1,a)、B兩點.求反比例函數(shù)的表達式及點B的坐標(biāo);在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo)及△PAB的面積.22.(10分)某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?23.(12分)為響應(yīng)“學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生”號召,某校開展了志愿者服務(wù)活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)”等五項,活動期間,隨機抽取了部分學(xué)生對志愿者服務(wù)情況進行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.被隨機抽取的學(xué)生共有多少名?在扇形統(tǒng)計圖中,求活動數(shù)為3項的學(xué)生所對應(yīng)的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;該校共有學(xué)生2000人,估計其中參與了4項或5項活動的學(xué)生共有多少人?24.為提高城市清雪能力,某區(qū)增加了機械清雪設(shè)備,現(xiàn)在平均每天比原來多清雪300立方米,現(xiàn)在清雪4000立方米所需時間與原來清雪3000立方米所需時間相同,求現(xiàn)在平均每天清雪量.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】連接OC,因為點C為弧BD的中點,所以∠BOC=∠DAB=50°,因為OC=OB,所以∠ABC=∠OCB=65°,故選C.2、D【解析】

由旋轉(zhuǎn)的性質(zhì)得到AB=BE,根據(jù)菱形的性質(zhì)得到AE=AB,推出△ABE是等邊三角形,得到AB=3,AD=,根據(jù)三角函數(shù)的定義得到∠BAC=30°,求得AC⊥BE,推出C在對角線AH上,得到A,C,H共線,于是得到結(jié)論.【詳解】如圖,連接AC交BE于點O,∵將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,∴AB=BE,∵四邊形AEHB為菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等邊三角形,∵AB=3,AD=,∴tan∠CAB=,∴∠BAC=30°,∴AC⊥BE,∴C在對角線AH上,∴A,C,H共線,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四邊形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=,故選D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),菱形的性質(zhì),等邊三角形的判定與性質(zhì),解直角三角形的應(yīng)用等,熟練掌握和靈活運用相關(guān)的知識是解題的關(guān)鍵.3、B【解析】

根據(jù)整式的運算法則分別計算可得出結(jié)論.【詳解】選項A,由合并同類項法則可得3a2﹣6a2=﹣3a2,不正確;選項B,單項式乘單項式的運算可得(﹣2a)?(﹣a)=2a2,正確;選項C,根據(jù)整式的除法可得10a10÷2a2=5a8,不正確;選項D,根據(jù)冪的乘方可得﹣(a3)2=﹣a6,不正確.故答案選B.考點:合并同類項;冪的乘方與積的乘方;單項式乘單項式.4、C【解析】分析:根據(jù)中心對稱圖形和軸對稱圖形對各選項分析判斷即可得解.詳解:A.正五邊形,不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.B.平行四邊形,是中心對稱圖形,不是軸對稱圖形,故本選項錯誤.C.矩形,既是中心對稱圖形又是軸對稱圖形,故本選項正確.D.等邊三角形,不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.點睛:本題考查了對中心對稱圖形和軸對稱圖形的判斷,我們要熟練掌握一些常見圖形屬于哪一類圖形,這樣在實際解題時,可以加快解題速度,也可以提高正確率.5、B【解析】|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴絕對值最小的數(shù)是0,故選:B.6、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據(jù)圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據(jù)三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯(lián)系是解題的關(guān)鍵.7、A【解析】

先求出二次函數(shù)的對稱軸,結(jié)合二次函數(shù)的增減性即可判斷.【詳解】解:二次函數(shù)的對稱軸為直線,∵拋物線開口向下,∴當(dāng)時,y隨x增大而增大,∵,∴故答案為:A.【點睛】本題考查了根據(jù)自變量的大小,比較函數(shù)值的大小,解題的關(guān)鍵是熟悉二次函數(shù)的增減性.8、D【解析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經(jīng)過任意兩點的“整點直線”有6條,經(jīng)過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.9、C【解析】

設(shè)的兩根為x1,x2,由二次函數(shù)的圖象可知,;設(shè)方程的兩根為m,n,再根據(jù)根與系數(shù)的關(guān)系即可得出結(jié)論.【詳解】解:設(shè)的兩根為x1,x2,∵由二次函數(shù)的圖象可知,,.設(shè)方程的兩根為m,n,則.故選C.【點睛】本題考查的是拋物線與x軸的交點,熟知拋物線與x軸的交點與一元二次方程根的關(guān)系是解答此題的關(guān)鍵.10、A【解析】解:∵點P所表示的數(shù)為a,點P在數(shù)軸的右邊,∴-3a一定在原點的左邊,且到原點的距離是點P到原點距離的3倍,∴數(shù)-3a所對應(yīng)的點可能是M,故選A.點睛:本題考查了數(shù)軸,解決本題的關(guān)鍵是判斷-3a一定在原點的左邊,且到原點的距離是點P到原點距離的3倍.二、填空題(本大題共6個小題,每小題3分,共18分)11、a(4a+b)(4a﹣b)【解析】

首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】解:16a3-ab2=a(16a2-b2)=a(4a+b)(4a-b).故答案為:a(4a+b)(4a-b).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.12、25【解析】試題解析:由題意13、①②④【解析】①由a=b,得5﹣2a=5﹣2b,根據(jù)等式的性質(zhì)先將式子兩邊同時乘以-2,再將等式兩邊同時加上5,等式仍成立,所以本選項正確,②由a=b,得ac=bc,根據(jù)等式的性質(zhì),等式兩邊同時乘以相同的式子,等式仍成立,所以本選項正確,③由a=b,得,根據(jù)等式的性質(zhì),等式兩邊同時除以一個不為0的數(shù)或式子,等式仍成立,因為可能為0,所以本選項不正確,④由,得3a=2b,根據(jù)等式的性質(zhì),等式兩邊同時乘以相同的式子6c,等式仍成立,所以本選項正確,⑤因為互為相反數(shù)的平方也相等,由a2=b2,得a=b,或a=-b,所以本選項錯誤,故答案為:①②④.14、M>P>N【解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.點睛:本題考查了不等式的性質(zhì)和利用作差法比較兩個代數(shù)式的大小.作差法比較大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本題還用到了不等式的傳遞性,即如果a>b,b>c,那么a>b>c.15、4【解析】∵四邊形MNPQ是矩形,∴NQ=MP,∴當(dāng)MP最大時,NQ就最大.∵點M是拋物線在軸上方部分圖象上的一點,且MP⊥軸于點P,∴當(dāng)點M是拋物線的頂點時,MP的值最大.∵,∴拋物線的頂點坐標(biāo)為(2,4),∴當(dāng)點M的坐標(biāo)為(2,4)時,MP最大=4,∴對角線NQ的最大值為4.16、2【解析】

利用平方差公式求解,即可求得答案.【詳解】=()2-()2=5-3=2.故答案為2.【點睛】此題考查了二次根式的乘除運算.此題難度不大,注意掌握平方差公式的應(yīng)用.三、解答題(共8題,共72分)17、(1)見解析(2)【解析】

(1)分別作∠ABC的平分線和過點A作AB的垂線,它們的交點為D點;(2)利用角平分線定義得到∠ABD=30°,利用含30度的直角三角形三邊的關(guān)系得到AD=AB=,然后利用三角形面積公式求解.【詳解】解:(1)如圖,點D為所作;(2)∵∠CAB=30°,∴∠ABC=60°.∵BD為角平分線,∴∠ABD=30°.∵DA⊥AB,∴∠DAB=90°.在Rt△ABD中,AD=AB=,∴△ABD的面積=×2×=.故答案為.【點睛】本題考查了作圖﹣復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.也考查了三角形面積公式.18、(1)詳見解析;(2)OA=.【解析】

(1)連接OB,證明∠ABE=∠ADB,可得∠ABE=∠BDC,則∠ADB=∠BDC;

(2)證明△AEB∽△CBD,AB=x,則BD=2x,可求出AB,則答案可求出.【詳解】(1)證明:連接OB,∵BE為⊙O的切線,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直徑,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四邊形ABCD的外接圓為⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=,∴設(shè)AB=x,則BD=2x,∴,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴,∴,解得x=3,∴AB=x=15,∴OA=.【點睛】本題考查切線的性質(zhì)、解直角三角形、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線解決問題.19、(1)y=x2+x;(2)t=-4,r=-1.【解析】

(1)由①聯(lián)立方程組,根據(jù)拋物線y=ax2+bx與直線y=x只有一個交點可以求出b的值,由②可得對稱軸為x=1,從而得a的值,進而得出結(jié)論;(2)進行分類討論,分別求出t和r的值.【詳解】(1)y=ax2+bx和y=x聯(lián)立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵對稱軸為=1,∴=1,∴a=,∴y=x2+x.(2)因為y=x2+x=(x-1)2+,所以頂點(1,)當(dāng)-2<r<1,且r≠0時,當(dāng)x=r時,y最大=r2+r=1.5r,得r=-1,當(dāng)x=-2時,y最小=-4,所以,這時t=-4,r=-1.當(dāng)r≥1時,y最大=,所以1.5r=,所以r=,不合題意,舍去,綜上可得,t=-4,r=-1.【點睛】本題考查二次函數(shù)綜合題,解題的關(guān)鍵是理解題意,利用二次函數(shù)的性質(zhì)解決問題.20、(1)購進獼猴桃20千克,購進芒果30千克;(2)能賺420元錢.【解析】

設(shè)購進獼猴桃x千克,購進芒果y千克,由總價單價數(shù)量結(jié)合老張用1600元從水果批發(fā)市場批發(fā)獼猴桃和芒果共50千克,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;根據(jù)利潤銷售收入成本,即可求出結(jié)論.【詳解】設(shè)購進獼猴桃x千克,購進芒果y千克,根據(jù)題意得:,解得:.答:購進獼猴桃20千克,購進芒果30千克.元.答:如果獼猴桃和芒果全部賣完,他能賺420元錢.【點睛】本題考查了二元一次方程組的應(yīng)用,解題的關(guān)鍵是:找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;根據(jù)數(shù)量關(guān)系,列式計算.21、(1),;(2)P,.【解析】試題分析:(1)由點A在一次函數(shù)圖象上,結(jié)合一次函數(shù)解析式可求出點A的坐標(biāo),再由點A的坐標(biāo)利用待定系數(shù)法即可求出反比例函數(shù)解析式,聯(lián)立兩函數(shù)解析式成方程組,解方程組即可求出點B坐標(biāo);(2)作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,連接PB.由點B、D的對稱性結(jié)合點B的坐標(biāo)找出點D的坐標(biāo),設(shè)直線AD的解析式為y=mx+n,結(jié)合點A、D的坐標(biāo)利用待定系數(shù)法求出直線AD的解析式,令直線AD的解析式中y=0求出點P的坐標(biāo),再通過分割圖形結(jié)合三角形的面積公式即可得出結(jié)論.試題解析:(1)把點A(1,a)代入一次函數(shù)y=-x+4,得:a=-1+4,解得:a=3,∴點A的坐標(biāo)為(1,3).把點A(1,3)代入反比例函數(shù)y=,得:3=k,∴反比例函數(shù)的表達式y(tǒng)=,聯(lián)立兩個函數(shù)關(guān)系式成方程組得:,解得:,或,∴點B的坐標(biāo)為(3,1).(2)作點B作關(guān)于x軸的對稱點D,交x軸于點C,連接AD,交x軸于點P,此時PA+PB的值最小,連接PB,如圖所示.∵點B、D關(guān)于x軸對稱,點B的坐標(biāo)為(3,1),∴點D的坐標(biāo)為(3,-1).設(shè)直線AD的解析式為y=mx+n,把A,D兩點代入得:,解得:,∴直線AD的解析式為y=-2x+1.令y=-2x+1中y=0,則-2x+1=0,解得:x=,∴點P的坐標(biāo)為(,0).S△PAB=S△ABD-S△PBD=BD?(xB-xA)-BD?(xB-xP)=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)=.考點:1.反比例函數(shù)與一次函數(shù)的交點問題;2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論