版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023屆安徽省亳州市高三一輪復(fù)習(xí)周測(一)數(shù)學(xué)試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上函數(shù)滿足,且對任意的不相等的實數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B. C. D.2.函數(shù)的圖象向右平移個單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實數(shù)的值為()A. B. C.2 D.3.設(shè)集合,集合,則=()A. B. C. D.R4.一只螞蟻在邊長為的正三角形區(qū)域內(nèi)隨機爬行,則在離三個頂點距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.5.《九章算術(shù)》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.6.《普通高中數(shù)學(xué)課程標準(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標對二人進行了測驗,根據(jù)測驗結(jié)果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲7.已知函數(shù),對任意的,,當(dāng)時,,則下列判斷正確的是()A. B.函數(shù)在上遞增C.函數(shù)的一條對稱軸是 D.函數(shù)的一個對稱中心是8.二項式的展開式中,常數(shù)項為()A. B.80 C. D.1609.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,當(dāng),,不共線時,的面積的最大值是()A. B. C. D.10.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.11.如圖所示,三國時代數(shù)學(xué)家在《周脾算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一個內(nèi)角為,若向弦圖內(nèi)隨機拋擲200顆米粒(大小忽略不計,?。?,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.20 B.27 C.54 D.6412.若函數(shù)滿足,且,則的最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從2、3、5、7、11、13這六個質(zhì)數(shù)中任取兩個數(shù),這兩個數(shù)的和仍是質(zhì)數(shù)的概率是________(結(jié)果用最簡分數(shù)表示)14.已知,則=___________,_____________________________15.函數(shù)的定義域是____________.(寫成區(qū)間的形式)16.(5分)某膳食營養(yǎng)科研機構(gòu)為研究牛蛙體內(nèi)的維生素E和鋅、硒等微量元素(這些元素可以延緩衰老,還能起到抗癌的效果)對人體的作用,現(xiàn)從只雌蛙和只雄蛙中任選只牛蛙進行抽樣試驗,則選出的只牛蛙中至少有只雄蛙的概率是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)與的圖象關(guān)于直線對稱.(為自然對數(shù)的底數(shù))(1)若的圖象在點處的切線經(jīng)過點,求的值;(2)若不等式恒成立,求正整數(shù)的最小值.18.(12分)已知函數(shù)(為實常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,底面為菱形,底面,.(1)求證:平面;(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.20.(12分)已知,.(1)解不等式;(2)若方程有三個解,求實數(shù)的取值范圍.21.(12分)已知函數(shù),.(1)若對于任意實數(shù),恒成立,求實數(shù)的范圍;(2)當(dāng)時,是否存在實數(shù),使曲線:在點處的切線與軸垂直?若存在,求出的值;若不存在,說明理由.22.(10分)已知函數(shù).(1)當(dāng)時,解關(guān)于x的不等式;(2)當(dāng)時,若對任意實數(shù),都成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應(yīng)于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計算最值,即可得出答案.2.C【解析】由函數(shù)的圖象向右平移個單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時,取得最大值,即,,,當(dāng)時,解得,故選C.點睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時,取得最大值,求解可得實數(shù)的值.3.D【解析】試題分析:由題,,,選D考點:集合的運算4.A【解析】
求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點到頂點、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點到三個頂點、、的距離都大于的概率是.故選:A.【點睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計算能力,屬于中等題.5.B【解析】
由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【詳解】根據(jù)題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側(cè)棱長為2且與底面垂直,因為直三棱柱可以復(fù)原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關(guān)計算,屬于基礎(chǔ)題.6.D【解析】
根據(jù)雷達圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎(chǔ)題.7.D【解析】
利用輔助角公式將正弦函數(shù)化簡,然后通過題目已知條件求出函數(shù)的周期,從而得到,即可求出解析式,然后利用函數(shù)的性質(zhì)即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數(shù),對于A,,故A錯誤;對于B,由,解得,故B錯誤;對于C,當(dāng)時,,故C錯誤;對于D,由,故D正確.故選:D【點睛】本題考查了簡單三角恒等變換以及三角函數(shù)的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.8.A【解析】
求出二項式的展開式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項式展開式的通式為,令,解得,則常數(shù)項為.故選:A.【點睛】本題考查二項式定理指定項的求解,關(guān)鍵是熟練應(yīng)用二項展開式的通式,是基礎(chǔ)題.9.A【解析】
根據(jù)平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結(jié)合求解.【詳解】如圖所示:設(shè),,,則,化簡得,當(dāng)點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.10.A【解析】
作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因為平面平面,平面.故,故平面.故二面角為.又直線與平面所成角為,因為,故.故,當(dāng)且僅當(dāng)重合時取等號.又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當(dāng)且僅當(dāng)平面時取等號.故.故選:A【點睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時運用線面角的最小性進行判定.屬于中檔題.11.B【解析】
設(shè)大正方體的邊長為,從而求得小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,利用概率模擬列方程即可求解?!驹斀狻吭O(shè)大正方體的邊長為,則小正方體的邊長為,設(shè)落在小正方形內(nèi)的米粒數(shù)大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應(yīng)用,考查計算能力,屬于基礎(chǔ)題。12.A【解析】
由推導(dǎo)出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿足,,即,,,,即,,則,由基本不等式得,當(dāng)且僅當(dāng)時,等號成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當(dāng)時,取得最小值.故選:A.【點睛】本題考查代數(shù)式最值的計算,涉及對數(shù)運算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
依據(jù)古典概型的計算公式,分別求“任取兩個數(shù)”和“任取兩個數(shù),和是質(zhì)數(shù)”的事件數(shù),計算即可?!驹斀狻俊叭稳蓚€數(shù)”的事件數(shù)為,“任取兩個數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個,所以任取兩個數(shù),這兩個數(shù)的和仍是質(zhì)數(shù)的概率是?!军c睛】本題主要考查古典概型的概率求法。14.?196?3【解析】
由二項式定理及二項式展開式通項得:,令x=1,則1+a0+a1+…+a7=(1+1)×(1-2)7=-2,所以a0+a1+…+a7=-3,得解.【詳解】由二項式(1?2x)7展開式的通項得,則,令x=1,則,所以a0+a1+…+a7=?3,故答案為:?196,?3.【點睛】本題考查二項式定理及其通項,屬于中等題.15.【解析】
要使函數(shù)有意義,需滿足,即,解得,故函數(shù)的定義域是.16.【解析】
記只雌蛙分別為,只雄蛙分別為,從中任選只牛蛙進行抽樣試驗,其基本事件為,共15個,選出的只牛蛙中至少有只雄蛙包含的基本事件為,共9個,故選出的只牛蛙中至少有只雄蛙的概率是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)e;(2)2.【解析】
(1)根據(jù)反函數(shù)的性質(zhì),得出,再利用導(dǎo)數(shù)的幾何意義,求出曲線在點處的切線為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出單調(diào)性,即可得出的值;(2)設(shè),求導(dǎo),求出的單調(diào)性,從而得出最大值為,結(jié)合恒成立的性質(zhì),得出正整數(shù)的最小值.【詳解】(1)根據(jù)題意,與的圖象關(guān)于直線對稱,所以函數(shù)的圖象與互為反函數(shù),則,,設(shè)點,,又,當(dāng)時,,曲線在點處的切線為,即,代入點,得,即,構(gòu)造函數(shù),當(dāng)時,,當(dāng)時,,且,當(dāng)時,單調(diào)遞增,而,故存在唯一的實數(shù)根.(2)由于不等式恒成立,可設(shè),所以,令,得.所以當(dāng)時,;當(dāng)時,,因此函數(shù)在是增函數(shù),在是減函數(shù).故函數(shù)的最大值為.令,因為,,又因為在是減函數(shù).所以當(dāng)時,.所以正整數(shù)的最小值為2.【點睛】本題考查導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)解決恒成立問題,涉及到單調(diào)性、構(gòu)造函數(shù)法等,考查函數(shù)思想和計算能力.18.(1)見解析(2)【解析】
(1)分類討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時,的最小值,即可得出實數(shù)的取值范圍.【詳解】(1),.當(dāng)即時,,,此時,在上單調(diào)遞增;當(dāng)即時,時,,在上單調(diào)遞減;時,,在上單調(diào)遞增;當(dāng)即時,,,此時,在上單調(diào)遞減;(2)當(dāng)時,因為在上單調(diào)遞增,所以的最小值為,所以當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因為,所以,.所以,所以.當(dāng)時,在上單調(diào)遞減所以的最小值為因為,所以,所以,綜上,.【點睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問題,屬于中檔題.19.(1)證明見解析(2)【解析】
(1)由底面為菱形,得,再由底面,可得,結(jié)合線面垂直的判定可得平面;(2)以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標系,分別求出平面與平面的一個法向量,由兩法向量所成角的余弦值可得平面與平面所成銳二面角的余弦值.【詳解】(1)證明:底面為菱形,,底面,平面,又,平面,平面;(2)解:,,為等邊三角形,.底面,是直線與平面所成的角為,在中,由,解得.如圖,以點為坐標原點,以所在直線及過點且垂直于平面的直線分別為軸建立空間直角坐標系.則,,,,.,,,.設(shè)平面與平面的一個法向量分別為,.由,取,得;由,取,得..平面與平面所成銳二面角的余弦值為.【點睛】本題考查直線與平面垂直的判定,考查空間想象能力與思維能力,訓(xùn)練了利用空間向量求解空間角,屬于中檔題.20.(1);(2).【解析】
(1)對分三種情況討論,分別去掉絕對值符號,然后求解不等式組,再求并集即可得結(jié)果;(2).作出函數(shù)的圖象,當(dāng)直線與函數(shù)的圖象有三個公共點時,方程有三個解,由圖可得結(jié)果.【詳解】(1)不等式,即為.當(dāng)時,即化為,得,此時不等式的解集為,當(dāng)時,即化為,解得,此時不等式的解集為.綜上,不等式的解集為.(2)即.作出函數(shù)的圖象如圖所示,當(dāng)直線與函數(shù)的圖象有三個公共點時,方程有三個解,所以.所以實數(shù)的取值范圍是.【點睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度山西省高校教師資格證之高等教育心理學(xué)題庫檢測試卷B卷附答案
- 2023年激光診斷設(shè)備資金籌措計劃書
- 福建省泉州市高一上學(xué)期期末英語試題與參考答案
- 小學(xué)幼兒園智慧監(jiān)控系統(tǒng)方案建議書
- 2024奶牛養(yǎng)殖基地施工承包協(xié)議
- 2024暑期工勤工儉學(xué)勞動協(xié)議示例
- 2024年借款居間協(xié)議格式樣本
- 2024年度采石場租賃運營權(quán)轉(zhuǎn)移協(xié)議
- 2024陶瓷燒制加工承攬協(xié)議
- 2024專業(yè)居間服務(wù)借款協(xié)議范本
- 反恐安全風(fēng)險評估報告
- 鄉(xiāng)村振興的實踐探索學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- Lesson7(課件)新概念英語第一冊
- 干粉滅火器演練方案及流程7篇,干粉滅火器的使用方法演練方案
- 科教版2023年小學(xué)科學(xué)六年級下冊期末階段質(zhì)量調(diào)研 【含答案】
- 完整指導(dǎo)青年教師記錄表
- 信息系統(tǒng)工程造價指導(dǎo)書
- 項目經(jīng)濟活動分析
- 農(nóng)業(yè)合作社全套報表(已設(shè)公式)-資產(chǎn)負債表-盈余及盈余分配表-成員權(quán)益變動表-現(xiàn)金流量表
- 高中政治選修一9.2中國與新興國際組織(課件)
- 太陽能電池絲網(wǎng)印刷簡介
評論
0/150
提交評論