北京朝陽陳經(jīng)綸中學2024年高三數(shù)學試題測試_第1頁
北京朝陽陳經(jīng)綸中學2024年高三數(shù)學試題測試_第2頁
北京朝陽陳經(jīng)綸中學2024年高三數(shù)學試題測試_第3頁
北京朝陽陳經(jīng)綸中學2024年高三數(shù)學試題測試_第4頁
北京朝陽陳經(jīng)綸中學2024年高三數(shù)學試題測試_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北京朝陽陳經(jīng)綸中學2024年高三數(shù)學試題測試考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當時,.若存在,且為函數(shù)的一個零點,則實數(shù)的取值范圍為()A. B. C. D.2.若為虛數(shù)單位,則復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.復數(shù)滿足,則復數(shù)等于()A. B. C.2 D.-24.已知函,,則的最小值為()A. B.1 C.0 D.5.已知函數(shù)(,)的一個零點是,函數(shù)圖象的一條對稱軸是直線,則當取得最小值時,函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()6.函數(shù)y=sin2x的圖象可能是A. B.C. D.7.設為非零向量,則“”是“與共線”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件8.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點的中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重比為58.79kg9.已知集合A={0,1},B={0,1,2},則滿足A∪C=B的集合C的個數(shù)為()A.4 B.3 C.2 D.110.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.311.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.12.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)為奇函數(shù),則_______.14.從4名男生和3名女生中選出4名去參加一項活動,要求男生中的甲和乙不能同時參加,女生中的丙和丁至少有一名參加,則不同的選法種數(shù)為______.(用數(shù)字作答)15.在平面直角坐標系xOy中,已知雙曲線(a>0)的一條漸近線方程為,則a=_______.16.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.18.(12分)某商店舉行促銷反饋活動,顧客購物每滿200元,有一次抽獎機會(即滿200元可以抽獎一次,滿400元可以抽獎兩次,依次類推).抽獎的規(guī)則如下:在一個不透明口袋中裝有編號分別為1,2,3,4,5的5個完全相同的小球,顧客每次從口袋中摸出一個小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號一次比一次大(如1,2,5),則獲得一等獎,獎金40元;若摸得的小球編號一次比一次小(如5,3,1),則獲得二等獎,獎金20元;其余情況獲得三等獎,獎金10元.(1)某人抽獎一次,求其獲獎金額X的概率分布和數(shù)學期望;(2)趙四購物恰好滿600元,假設他不放棄每次抽獎機會,求他獲得的獎金恰好為60元的概率.19.(12分)已知數(shù)列,,數(shù)列滿足,n.(1)若,,求數(shù)列的前2n項和;(2)若數(shù)列為等差數(shù)列,且對任意n,恒成立.①當數(shù)列為等差數(shù)列時,求證:數(shù)列,的公差相等;②數(shù)列能否為等比數(shù)列?若能,請寫出所有滿足條件的數(shù)列;若不能,請說明理由.20.(12分)已知.(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若不等式恒成立,求實數(shù)的取值范圍.21.(12分)在平面直角坐標系中,,,且滿足(1)求點的軌跡的方程;(2)過,作直線交軌跡于,兩點,若的面積是面積的2倍,求直線的方程.22.(10分)已知圓外有一點,過點作直線.(1)當直線與圓相切時,求直線的方程;(2)當直線的傾斜角為時,求直線被圓所截得的弦長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先構造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導,判斷其單調(diào)性,進而可求出結(jié)果.【詳解】構造函數(shù),因為,所以,所以為奇函數(shù),當時,,所以在上單調(diào)遞減,所以在R上單調(diào)遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數(shù)的一個零點,所以在時有一個零點因為當時,,所以函數(shù)在時單調(diào)遞減,由選項知,,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.【點睛】本題主要考查函數(shù)與方程的綜合問題,難度較大.2、D【解析】

根據(jù)復數(shù)的運算,化簡得到,再結(jié)合復數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復數(shù)的運算,可得,所對應的點為位于第四象限.故選D.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何意義,其中解答中熟記復數(shù)的運算法則,準確化簡復數(shù)為代數(shù)形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、B【解析】

通過復數(shù)的模以及復數(shù)的代數(shù)形式混合運算,化簡求解即可.【詳解】復數(shù)滿足,∴,故選B.【點睛】本題主要考查復數(shù)的基本運算,復數(shù)模長的概念,屬于基礎題.4、B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當,即時,.故選:B.【點睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應用,是一道中檔題.5、B【解析】

根據(jù)函數(shù)的一個零點是,得出,再根據(jù)是對稱軸,得出,求出的最小值與對應的,寫出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因為,所以().又,所以,所以,令(),則().因此,當取得最小值時,的單調(diào)遞增區(qū)間是().故選:B【點睛】此題考查三角函數(shù)的對稱軸和對稱點,在對稱軸處取得最值,對稱點處函數(shù)值為零,屬于較易題目.6、D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數(shù),排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復.7、A【解析】

根據(jù)向量共線的性質(zhì)依次判斷充分性和必要性得到答案.【詳解】若,則與共線,且方向相同,充分性;當與共線,方向相反時,,故不必要.故選:.【點睛】本題考查了向量共線,充分不必要條件,意在考查學生的推斷能力.8、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.9、A【解析】

由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項.【點睛】考查集合并集運算,屬于簡單題.10、A【解析】

分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質(zhì)把動線段的長度轉(zhuǎn)化為到準線或焦點的距離來求解.11、C【解析】

利用圓心到漸近線的距離等于半徑即可建立間的關系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關鍵是建立三者間的方程或不等關系,本題是一道基礎題.12、A【解析】

求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】

由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域為,,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【點睛】本題考查奇函數(shù)性質(zhì)的應用,考查學生的計算求解能力,屬于基礎題.14、1【解析】

由排列組合及分類討論思想分別討論:①設甲參加,乙不參加,②設乙參加,甲不參加,③設甲,乙都不參加,可得不同的選法種數(shù)為9+9+5=1,得解.【詳解】①設甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,②設乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,③設甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為5,綜合①②③得:不同的選法種數(shù)為9+9+5=1,故答案為:1.【點睛】本題考查了排列組合及分類討論思想,準確分類及計算是關鍵,屬中檔題.15、3【解析】

雙曲線的焦點在軸上,漸近線為,結(jié)合漸近線方程為可求.【詳解】因為雙曲線(a>0)的漸近線為,且一條漸近線方程為,所以.故答案為:.【點睛】本題主要考查雙曲線的漸近線,明確雙曲線的焦點位置,寫出雙曲線的漸近線方程的對應形式是求解的關鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).16、【解析】

連接,易得,可得四邊形的面積為,從而可得,進而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當最小時,最小,設點,則,所以當時,,則,當點的橫坐標時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.【點睛】本題考查直線與圓的位置關系的應用,考查拋物線上的動點到定點的距離的求法,考查學生的計算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)先消去參數(shù),化為直角坐標方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長和點到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標方程為.(2)由,得,設,兩點對應的極分別為,,則,,所以,又點到直線的距離所以【點睛】本題主要考查參數(shù)方程、直角坐標方程及極坐標方程的轉(zhuǎn)化和直線與曲線的位置關系,還考查了數(shù)形結(jié)合的思想和運算求解的能力,屬于中檔題.18、(1)分布見解析,期望為;(2).【解析】

(1)先明確X的可能取值,分別求解其概率,然后寫出分布列,利用期望公式可求期望;(2)獲得的獎金恰好為60元,可能是三次二等獎,也可能是一次一等獎,兩次三等獎,然后分別求解概率即可.【詳解】(1)由題意知,隨機變量X的可能取值為10,20,40且,,所以,即隨機變量X的概率分布為X102040P所以隨機變量X的數(shù)學期望.(2)由題意知,趙四有三次抽獎機會,設恰好獲得60元為事件A,因為60=20×3=40+10+10,所以.【點睛】本題主要考查隨機變量的分布列及數(shù)學期望,明確隨機變量的所有取值是求解的第一步,再求解對應的概率,側(cè)重考查數(shù)學建模的核心素養(yǎng).19、(1)(2)①見解析②數(shù)列不能為等比數(shù)列,見解析【解析】

(1)根據(jù)數(shù)列通項公式的特點,奇數(shù)項為等差數(shù)列,偶數(shù)項為等比數(shù)列,選用分組求和的方法進行求解;(2)①設數(shù)列的公差為,數(shù)列的公差為,當n為奇數(shù)時,得出;當n為偶數(shù)時,得出,從而可證數(shù)列,的公差相等;②利用反證法,先假設可以為等比數(shù)列,結(jié)合題意得出矛盾,進而得出數(shù)列不能為等比數(shù)列.【詳解】(1)因為,,所以,且,由題意可知,數(shù)列是以1為首項,2為公差的等差數(shù)列,數(shù)列是首項和公比均為4的等比數(shù)列,所以;(2)①證明:設數(shù)列的公差為,數(shù)列的公差為,當n為奇數(shù)時,,若,則當時,,即,與題意不符,所以,當n為偶數(shù)時,,,若,則當時,,即,與題意不符,所以,綜上,,原命題得證;②假設可以為等比數(shù)列,設公比為q,因為,所以,所以,,因為當時,,所以當n為偶數(shù),且時,,即當n為偶數(shù),且時,不成立,與題意矛盾,所以數(shù)列不能為等比數(shù)列.【點睛】本題主要考查數(shù)列的求和及數(shù)列的綜合,數(shù)列求和時一般是結(jié)合通項公式的特征選取合適的求和方法,數(shù)列綜合題要回歸基本量,充分挖掘題目已知信息,細思細算,本題綜合性較強,難度較大,側(cè)重考查邏輯推理和數(shù)學運算的核心素養(yǎng).20、(1)答案不唯一,具體見解析(2)【解析】

(1)分類討論,利用導數(shù)的正負,可得函數(shù)的單調(diào)區(qū)間.(2)分離出參數(shù)后,轉(zhuǎn)化為函數(shù)的最值問題解決,注意函數(shù)定義域.【詳解】(1)由得或①當時,由,得.由,得或此時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.②當時,由,得由,得或此時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和綜上:當時,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和當

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論