2025屆百校聯(lián)盟數(shù)學高二上期末聯(lián)考模擬試題含解析2_第1頁
2025屆百校聯(lián)盟數(shù)學高二上期末聯(lián)考模擬試題含解析2_第2頁
2025屆百校聯(lián)盟數(shù)學高二上期末聯(lián)考模擬試題含解析2_第3頁
2025屆百校聯(lián)盟數(shù)學高二上期末聯(lián)考模擬試題含解析2_第4頁
2025屆百校聯(lián)盟數(shù)學高二上期末聯(lián)考模擬試題含解析2_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆百校聯(lián)盟數(shù)學高二上期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數(shù)列中,為其前項和,,則的值為()A.13 B.16C.104 D.2082.已知直線的方向向量為,則直線l的傾斜角為()A.30° B.60°C.120° D.150°3.如圖所示,直三棱柱中,,,分別是,的中點,,則與所成角的余弦值為()A. B.C. D.4.在平面直角坐標系xOy中,過x軸上的點P分別向圓和圓引切線,記切線長分別為.則的最小值為()A.2 B.3C.4 D.55.已知等差數(shù)列中的、是函數(shù)的兩個不同的極值點,則的值為()A. B.1C.2 D.36.已知直線l1:mx-2y+1=0,l2:x-(m-1)y-1=0,則“m=2”是“l(fā)1平行于l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件7.一盒子里有黑色、紅色、綠色的球各一個,現(xiàn)從中選出一個球.事件選出的球是紅色,事件選出的球是綠色.則事件與事件()A.是互斥事件,不是對立事件 B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件 D.既不是互斥事件也不是對立事件8.點F是拋物線的焦點,點,P為拋物線上一點,P不在直線AF上,則△PAF的周長的最小值是()A.4 B.6C. D.9.已知拋物線x2=4y上有一條長為6的動弦AB,則AB的中點到x軸的最短距離為()A. B.C.1 D.210.已知向量是兩兩垂直的單位向量,且,則()A.5 B.1C.-1 D.711.若用面積為48的矩形ABCD截某圓錐得到一個橢圓,且該橢圓與矩形ABCD的四邊都相切.設橢圓的方程為,則下列滿足題意的方程為()A. B.C. D.12.已知函數(shù)在處的導數(shù)為,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點和,圓,當圓C與線段沒有公共點時,則實數(shù)m的取值范圍為___________14.已知,動點滿足,則點的軌跡方程為___________.15.已知數(shù)列滿足,則_____________16.如果方程表示焦點在軸上的橢圓,那么實數(shù)的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓過點,離心率為(1)求橢圓的標準方程;(2)過橢圓的上頂點作直線l交拋物線于A,B兩點,O為坐標原點①求證:;②設OA,OB分別與橢圓相交于C,D兩點,過點O作直線CD的垂線OH,垂足為H,證明:為定值18.(12分)如圖,四棱錐中,,.(1)證明:平面;(2)在線段上是否存在一點,使直線與平面所成角的正弦值等于?19.(12分)已知數(shù)列滿足且.(1)證明數(shù)列是等比數(shù)列;(2)設數(shù)列滿足,,求數(shù)列的通項公式.20.(12分)已知函數(shù).(1)求函數(shù)的單調區(qū)間;(2)當時,求函數(shù)的值域.21.(12分)已知橢圓過點,且離心率(1)求橢圓的方程;(2)設點為橢圓的左焦點,點,過點作的垂線交橢圓于點,,連接與交于點①若,求;②求的值22.(10分)已知圓的圓心為,且圓經(jīng)過點(1)求圓的標準方程;(2)若圓:與圓恰有兩條公切線,求實數(shù)取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用等差數(shù)列下標的性質,結合等差數(shù)列前項和公式進行求解即可.【詳解】由,所以,故選:D2、B【解析】利用直線的方向向量求出其斜率,進而求出傾斜角作答.【詳解】因直線的方向向量為,則直線l的斜率,直線l的傾斜角,于是得,解得,所以直線l的傾斜角為.故選:B3、A【解析】取的中點為,的中點為,然后可得或其補角即為與所成角,然后在中求出答案即可.【詳解】取的中點為,的中點為,,,所以或其補角即為與所成角,設,則,,在,,故選:A4、D【解析】利用兩點間的距離公式,將切線長的和轉化為到兩圓心的距離和,利用三點共線距離最小即可求解.詳解】,圓心,半徑,圓心,半徑設點P,則,即到與兩點距離之和的最小值,當、、三點共線時,的和最小,即的和最小值為.故選:D【點睛】本題考查了兩點間的距離公式,需熟記公式,屬于基礎題.5、C【解析】對求導,由題設及根與系數(shù)關系可得,再根據(jù)等差中項的性質求,最后應用對數(shù)運算求值即可.【詳解】由題設,,由、是的兩個不同的極值點,所以,又是等差數(shù)列,所以,即,故.故選:C6、C【解析】利用兩直線平行的等價條件求得m,再結合充分必要條件進行判斷即可.【詳解】由直線l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,經(jīng)驗證,當m=-1時,直線l1與l2重合,舍去,所以“m=2”是“l(fā)1平行于l2”的充要條件,故選C.【點睛】本題考查兩直線平行的條件,準確計算是關鍵,注意充分必要條件的判斷是基礎題7、A【解析】根據(jù)事件的關系進行判斷即可.【詳解】由題意可知,事件與為互斥事件,但事件不是必然事件,所以,事件與事件是互斥事件,不是對立事件.故選:A.【點睛】本題考查事件關系的判斷,考查互斥事件和對立事件概率的理解,屬于基礎題.8、C【解析】由拋物線的定義轉化后求距離最值【詳解】拋物線的焦點,準線為過點作準線于點,故△PAF的周長為,,可知當三點共線時周長最小,為故選:C9、D【解析】由題意知,拋物線的準線l:y=-1,過A作AA1⊥l于A1,過B作BB1⊥l于B1,設弦AB的中點為M,過M作MM1⊥l于M1.則|MM1|=.|AB|≤|AF|+|BF|(F為拋物線的焦點),即|AF|+|BF|≥6,|AA1|+|BB1|≥6,2|MM1|≥6,|MM1|≥3,故M到x軸的距離d≥2.10、B【解析】根據(jù)單位向量的定義和向量的乘法運算計算即可.【詳解】因為向量是兩兩垂直的單位向量,且所以.故選:B11、A【解析】由橢圓與矩形ABCD的四邊都相切得到再逐項判斷即可.【詳解】由于橢圓與矩形ABCD的四邊都相切,所以矩形兩邊長分別為,由矩形面積為48,得,對于選項B,D由于,不符合條件,不正確.對于選項A,,滿足題意.對于選項C,不正確.故選:A.12、C【解析】利用導數(shù)的定義即可求出【詳解】故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】當點和都在圓的內(nèi)部時,結合點與圓的位置關系得出實數(shù)m的取值范圍,再由圓心到直線的距離大于半徑得出實數(shù)m的取值范圍.【詳解】當點和都在圓的內(nèi)部時,,解得或直線的方程為,即圓心到直線的距離為,當圓心到直線的距離大于半徑時,,且.綜上,實數(shù)m的取值范圍為.故答案為:14、【解析】表示出、,根據(jù)題意,列出等式,化簡整理即可得答案.【詳解】,由題意得,所以整理可得,即.故答案為:.15、【解析】找到數(shù)列的規(guī)律,由此求得.【詳解】依題意,,,所以數(shù)列是以為周期的周期數(shù)列,.故答案為:16、【解析】化簡橢圓的方程為標準形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因為方程表示焦點在軸上的橢圓,可得,解得,實數(shù)的取值范圍是.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)①證明見解析;②證明見解析【解析】(1)根據(jù)離心率及過點求出求解即可;(2)①設直線l的方程為,利用向量的數(shù)量積計算證明即可;②設直線CD方程為,利用求出,再由點O到直線CD的距離即可求證.【小問1詳解】因為,所以,又因為,解得,,所以橢圓的方程為;【小問2詳解】①證明:設,,依題意,直線l斜率存在,設直線l的方程為,聯(lián)立方程,消去y得,所以,又因為,所以,因此,②證明:設,,設直線CD方程為,因為,所以,則,聯(lián)立,得當時,,則所以,即滿足則,即為定值18、(1)詳解解析;(2)存在.【解析】(1)利用勾股定理證得,結合線面垂直的判定定理即可證得結論;(2)以A為原點建立空間直角坐標系,設點,,求得平面的法向量,利用已知條件建立關于的方程,進而得解.【小問1詳解】取中點為,連接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小問2詳解】以A為坐標原點,以為x軸,為y軸,為z軸建立空間直角坐標系,則,,,,設點,因為點F在線段上,設,,,設平面的法向量為,,,則,令,則,設直線CF與平面所成角為,,解得或(舍去),,此時點F是的三等分點,所以在線段上是存在一點,使直線與平面所成角的正弦值等于.19、(1)證明見解析;(2).【解析】(1)根據(jù)題意可得,根據(jù)等比數(shù)列的定義,即可得證;(2)由(1)可得,可得,利用累加法即可求得數(shù)列的通項公式.【詳解】(1)因為,所以,即,所以是首項為1公比為3的等比數(shù)列(2)由(1)可知,所以因為,所以……,,各式相加得:,又,所以,又當n=1時,滿足上式,所以20、(1)單調遞增區(qū)間(?∞,?1)和(4,+∞),單調遞減區(qū)間(?1,4)(2)【解析】(1)求出,令,由導數(shù)的正負即可得到函數(shù)f(x)的單調遞增區(qū)間和遞減區(qū)間;(2)求出函數(shù)在區(qū)間中的單調性,求出極大值和極小值以及區(qū)間端點的函數(shù)值,比較大小即可得到答案【小問1詳解】由函數(shù)得,令,解得x<?1或x>4,;令,解得?1<x<4,故函數(shù)f(x)的單調遞增區(qū)間為(?∞,?1)和(4,+∞),單調遞減區(qū)間為(?1,4);【小問2詳解】由(1)可知,當x∈[?3,?1)時,,f(x)單調遞增,當x∈(?1,4)時,,f(x)單調遞減,當x∈(4,6]時,,f(x)單調遞增,所以當x=?1時,函數(shù)f(x)取得極大值f(?1)=,當x=4時,函數(shù)f(x)取得極小值f(4)=,又,所以當x∈[?3,6]時,函數(shù)f(x)的值域為21、(1)(2)①,②【解析】(1)由題意得解方程組求出,從而可得橢圓的方程,(2)①由題意可得的方程為,再與橢圓方程聯(lián)立,解方程組求出的坐標,從而可求出;②當時,,當時,直線方程為,與橢圓方程聯(lián)立,消去,利用根與系數(shù)的關系,結合中點坐標公式可得中點的坐標,再將直線的方程與方程聯(lián)立,求出點的坐標,從而可求出的值【小問1詳解】由題意得解得,所以橢圓的方程為.【小問2詳解】①當時,直線的斜率,則的垂線的方程為由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論