山東省即墨一中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
山東省即墨一中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
山東省即墨一中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
山東省即墨一中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
山東省即墨一中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省即墨一中2025屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)集合,則AB=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}2.點是正方體的底面內(nèi)(包括邊界)的動點.給出下列三個結(jié)論:①滿足的點有且只有個;②滿足的點有且只有個;③滿足平面的點的軌跡是線段.則上述結(jié)論正確的個數(shù)是()A. B.C. D.3.將一張坐標(biāo)紙折疊一次,使點與重合,求折痕所在直線是()A. B.C. D.4.已知等差數(shù)列的前項和為,,,則()A. B.C. D.5.已知曲線C的方程為,則下列結(jié)論正確的是()A.當(dāng)時,曲線C為圓B.“”是“曲線C為焦點在x軸上的雙曲線”的充分而不必要條件C.“”是“曲線C為焦點在x軸上的橢圓”的必要而不充分條件D.存在實數(shù)k使得曲線C為雙曲線,其離心率為6.下列命題中正確的個數(shù)為()①若向量,與空間任意向量都不能構(gòu)成基底,則;②若向量,,是空間一組基底,則,,也是空間的一組基底;③為空間一組基底,若,則;④對于任意非零空間向量,,若,則A.1 B.2C.3 D.47.已知直線、的方向向量分別為、,若,則等于()A.1 B.2C.0 D.38.若兩定點A,B的距離為3,動點M滿足,則M點的軌跡圍成區(qū)域的面積為()A. B.C. D.9.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列判斷正確的是()A.在區(qū)間上,函數(shù)增函數(shù) B.在區(qū)間上,函數(shù)是減函數(shù)C.為函數(shù)的極小值點 D.2為函數(shù)的極大值點10.和的等差中項與等比中項分別為()A., B.2,C., D.1,11.在正方體中中,,若點P在側(cè)面(不含邊界)內(nèi)運動,,且點P到底面的距離為3,則異面直線與所成角的余弦值是()A. B.C. D.12.已知兩條直線:,:,且,則的值為()A.-2 B.1C.-2或1 D.2或-1二、填空題:本題共4小題,每小題5分,共20分。13.已知正數(shù)、滿足,則的最大值為__________14.已知曲線,則以下結(jié)論正確的是______.①曲線C關(guān)于點對稱;②曲線C關(guān)于y軸對稱;③曲線C被x軸所截得的弦長為2;④曲線C上的點到原點距離都不超過2.15.在公差不為的等差數(shù)列中,,,成等比數(shù)列,數(shù)列的前項和為(1)求數(shù)列的通項公式;(2)若,且數(shù)列的前項和為,求16.已知橢圓和雙曲線有相同的焦點和,設(shè)橢圓和雙曲線的離心率分別為,,為兩曲線的一個公共點,且(為坐標(biāo)原點).若,則的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),為自然對數(shù)的底數(shù).(1)當(dāng)時,證明,,;(2)若函數(shù)在上存在極值點,求實數(shù)的取值范圍.18.(12分)已知函數(shù),其中,.(1)當(dāng)時,求曲線在點處切線方程;(2)求函數(shù)的單調(diào)區(qū)間.19.(12分)在平面直角坐標(biāo)系中,動點到定點的距離比到軸的距離大,設(shè)動點的軌跡為曲線,分別過曲線上的兩點,做曲線的兩條切線,且交于點,與直線交于兩點(1)求曲線的方程;(2)求面積的最小值.20.(12分)已知直線.(1)若,求直線與直線的交點坐標(biāo);(2)若直線與直線垂直,求a的值.21.(12分)某市對新形勢下的中考改革工作進行了全面的部署安排.中考錄取科目設(shè)置分為固定賦分科目和非固定賦分科目,固定賦分科目(語文、數(shù)學(xué)、英語、物理、體育與健康)按卷面分計算;非固定賦分科目(化學(xué)、生物、道德與法治、歷史、地理)按學(xué)生在該學(xué)科中的排名進行等級賦分,即根據(jù)改革方案,將每門等級考試科目中考生的原始成績從高到低分為A,,,,,,,共個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為,,,,,,,.等級考試科目成績計入考生總成績時,將A至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到,,,,,,,八個分數(shù)區(qū)間,得到考生的等級成績.該市學(xué)生的中考化學(xué)原始成績制成頻率分布直方圖如圖所示:(1)求圖中的值;(2)估計該市學(xué)生中考化學(xué)原始成績不少于多少分才能達到等級及以上(含等級)?(3)由于中考改革后學(xué)生各科原始成績不再返回學(xué)校,只告知各校參考學(xué)生的各科平均成績及方差.已知某校初三共有名學(xué)生參加中考,為了估計該校學(xué)生的化學(xué)原始成績達到等級及以上(含等級)的人數(shù),將該校學(xué)生的化學(xué)原始成績看作服從正態(tài)分布,并用這名學(xué)生的化學(xué)平均成績作為的估計值,用這名學(xué)生化學(xué)成績的方差作為的估計值,計算人數(shù)(結(jié)果保留整數(shù))附:,,.22.(10分)已知數(shù)列{}滿足a1=1,a3+a7=18,且(n≥2)(1)求數(shù)列{}的通項公式;(2)若=·,求數(shù)列的前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】按交集定義求解即可.【詳解】AB={2,3}故選:B2、C【解析】對于①,根據(jù)線線平行的性質(zhì)可知點即為點,因此可判斷①正確;對于②,根據(jù)線面垂直的判定可知平面,,由此可判定的位置,進而判定②的正誤;對于③,根據(jù)面面平行可判定平面平面,因此可判斷此時一定落在上,由此可判斷③的正誤.【詳解】如圖:對于①,在正方體中,,若異于,則過點至少有兩條直線和平行,這是不可能的,因此底面內(nèi)(包括邊界)滿足的點有且只有個,即為點,故①正確;對于②,正方體中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直線一定落在平面內(nèi),由是平面上的動點可知,一定落在上,這樣的點有無數(shù)多個,故②錯誤;對于③,,平面,則平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的動點可知,此時一定落在上,即點的軌跡是線段,故③正確,故選:C.3、D【解析】設(shè),,則折痕所在直線是線段AB的垂直平分線,故求出AB中點坐標(biāo),折痕與直線AB垂直,進而求出斜率,用點斜式求出折痕所在直線方程.【詳解】,,所以與的中點坐標(biāo)為,又,所以折痕所在直線的斜率為1,故折痕所在直線是,即.故選:D4、C【解析】利用已知條件求得,由此求得.【詳解】依題意,解得,所以.故選:C【點睛】本小題主要考查等差數(shù)列的通項公式和前項和公式,屬于基礎(chǔ)題.5、C【解析】根據(jù)橢圓、雙曲線的定義及簡單幾何性質(zhì)計算可得;【詳解】解:由題意,曲線C的方程為,對于A中,當(dāng)時,曲線C的方程為,此時曲線C表示橢圓,所以A錯誤;對于B中,當(dāng)曲線C的方程為表示焦點在x軸上的雙曲線時,則滿足,解得,所以“”是“曲線C為焦點在x軸上的雙曲線”的必要不充分條件,所以B不正確;對于C中,當(dāng)曲線C的方程為表示焦點在x軸上的橢圓時,則滿足,解得,所以“”是“曲線C為焦點在x軸上的雙曲線”的必要不充分條件,所以C正確;對于D中,當(dāng)曲線C的方程為表示雙曲線,且離心率為時,此時雙曲線的實半軸長等于虛半軸長,此時,解得,此時方程表示圓,所以不正確.故選:C.6、C【解析】根據(jù)題意、空間向量基底的概念和共線的運算即可判斷命題①②③,根據(jù)空間向量的平行關(guān)系即可判斷命題④.【詳解】①:向量與空間任意向量都不能構(gòu)成一個基底,則與共線或與其中有一個為零向量,所以,故①正確;②:由向量是空間一組基底,則空間中任意一個向量,存在唯一的實數(shù)組使得,所以也是空間一組基底,故②正確;③:由為空間一組基底,若,則,所以,故③正確;④:對于任意非零空間向量,,若,則存在一個實數(shù)使得,有,又中可以有為0的,分式?jīng)]有意義,故④錯誤.故選:C7、C【解析】由可得出,利用空間向量數(shù)量積的坐標(biāo)運算可得出關(guān)于實數(shù)的等式,由此可解得實數(shù)的值.【詳解】若,則,所以,所以,解得.故選:C8、D【解析】以點A為坐標(biāo)原點,射線AB為x軸的非負半軸建立直角坐標(biāo)系,求出點M的軌跡方程即可計算得解.【詳解】以點A為坐標(biāo)原點,射線AB為x軸的非負半軸建立直角坐標(biāo)系,如圖,設(shè)點,則,化簡并整理得:,于是得點M的軌跡是以點為圓心,2為半徑的圓,其面積為,所以M點的軌跡圍成區(qū)域的面積為.故選:D9、D【解析】根據(jù)導(dǎo)函數(shù)與原函數(shù)的關(guān)系可求解.【詳解】對于A,在區(qū)間,,故A不正確;對于B,在區(qū)間,,故B不正確;對于C、D,由圖可知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,且,所以為函數(shù)的極大值點,故C不正確,D正確.故選:D10、C【解析】根據(jù)等差中項和等比中項的概念分別求值即可.【詳解】和的等差中項為,和的等比中項為.故選:C.11、A【解析】如圖建立空間直角坐標(biāo)系,先由,且點P到底面的距離為3,確定點P的位置,然后利用空間向量求解即可【詳解】如圖,以為坐標(biāo)原點,以所在的直線分別為軸,建立空間直角坐標(biāo)系,則,所以,所以,所以,因為,所以平面,因為平面平面,點P在側(cè)面(不含邊界)內(nèi)運動,,所以,因為點P到底面的距離為3,所以,所以,因為,所以異面直線與所成角的余弦值為,故選:A12、B【解析】兩直線平行,傾斜角相等,斜率均不存在或斜率存在且相等,據(jù)此即可求解.【詳解】:,:斜率不可能同時不存在,∴和斜率相等,則或,∵m=-2時,和重合,故m=1.另解:,故m=1.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直接利用均值不等式得到答案.【詳解】,當(dāng)即時等號成立.故答案為【點睛】本題考查了均值不等式,意在考查學(xué)生的計算能力.14、②④【解析】將x換成,將y換成,若方程不變則關(guān)于原點對稱;將x換成,曲線的方程不變則關(guān)于y軸對稱;令通過解方程即可求得被x軸所截得的弦長;利用基本不等式即可判斷出曲線C上y軸右側(cè)的點到原點距離是否不超過2,根據(jù)曲線C關(guān)于y軸對稱,即可判斷出曲線C上的點到原點距離是否都不超過2.【詳解】對于①,將x換成,將y換成,方程改變,則曲線C關(guān)于點不對稱,故①錯誤;對于②,將x換成,曲線的方程不變,則曲線C關(guān)于y軸對稱,故②正確;對于③,令得,,解得,即曲線C與x軸的交點為和,則曲線C被x軸所截得的弦長為,故③錯誤;對于④,當(dāng)時,,可得,當(dāng)且僅當(dāng)時取等號,即,則,即曲線C上y軸右側(cè)的點到原點的距離都不超過2,此曲線關(guān)于y軸對稱,即曲線C上y軸左側(cè)的點到原點的距離也不超過2,故④正確;故答案為:②④.15、(1)(2)【解析】(1)由解出,再由前項和為55求得,由等差數(shù)列通項公式即可求解;(2)先求出,再由裂項相消求和即可.【小問1詳解】設(shè)公差為,由,,成等比數(shù)列,可得,即有,整理得,數(shù)列的前項和為55,可得,解得1,1,則;【小問2詳解】,則16、【解析】設(shè)出半焦距c,用表示出橢圓的長半軸長、雙曲線的實半軸長,由可得為直角三角形,由此建立關(guān)系即可計算作答,【詳解】設(shè)橢圓的長半軸長為,雙曲線的實半軸長為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對稱性知,不妨令焦點和在x軸上,點P在y軸右側(cè),由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點,因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案為:【點睛】方法點睛:求解橢圓或雙曲線的離心率的三種方法:①定義法:通過已知條件列出方程組,求得值,根據(jù)離心率的定義求解離心率;②齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;③特殊值法:通過取特殊值或特殊位置,求出離心率.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析:(2)【解析】(1)代入,求導(dǎo)分析函數(shù)單調(diào)性,再的最小值即可證明.(2),若函數(shù)在上存在兩個極值點,則在上有根.再分,與,利用函數(shù)的零點存在定理討論導(dǎo)函數(shù)的零點即可.【詳解】(1)證明:當(dāng)時,,則,當(dāng)時,,則,又因為,所以當(dāng)時,,僅時,,所以在上是單調(diào)遞減,所以,即.(2),因為,所以,①當(dāng)時,恒成立,所以在上單調(diào)遞增,沒有極值點.②當(dāng)時,在區(qū)間上單調(diào)遞增,因為.當(dāng)時,,所以在上單調(diào)遞減,沒有極值點.當(dāng)時,,所以存在,使當(dāng)時,時,所以在處取得極小值,為極小值點.綜上可知,若函數(shù)在上存在極值點,則實數(shù).【點睛】本題主要考查了利用導(dǎo)函數(shù)求解函數(shù)的單調(diào)性與最值,進而證明不等式的方法.同時也考查了利用導(dǎo)數(shù)分析函數(shù)極值點的問題,需要結(jié)合零點存在定理求解.屬于難題.18、(1);(2)答案見解析.【解析】(1)當(dāng)時,,求出函數(shù)的導(dǎo)函數(shù),再求出,,再利用點斜式求出切線方程;(2)首先求出函數(shù)的導(dǎo)函數(shù),再對參數(shù)分類討論,求出函數(shù)的單調(diào)區(qū)間;【詳解】解:(1)當(dāng)時,,所以,所以,,所以切線方程為:,即:(2)函數(shù)定義域為,,因為,①當(dāng)時,在上恒成立,所以函數(shù)的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;②當(dāng)時,由得,由得,所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為【點睛】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題.19、(1)(2)【解析】(1)由題意可得化簡可得答案;(2)求出、方程并得到、點坐標(biāo),再聯(lián)立,方程求出交點和、點到的距離,可得,設(shè),與拋物線方程聯(lián)立利用韋達定理得到,設(shè),記,利用導(dǎo)數(shù)可得答案..【小問1詳解】由題意可知:,即:化簡得:;【小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論