




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
寧夏石嘴山市一中2025屆數(shù)學(xué)高三第一學(xué)期期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)不等式組表示的平面區(qū)域為,若從圓:的內(nèi)部隨機選取一點,則取自的概率為()A. B. C. D.2.在平面直角坐標(biāo)系中,經(jīng)過點,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.3.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.44.雙曲線的漸近線方程是()A. B. C. D.5.過拋物線的焦點的直線與拋物線交于、兩點,且,拋物線的準(zhǔn)線與軸交于,的面積為,則()A. B. C. D.6.已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實數(shù)()A. B. C. D.7.已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是()A. B. C. D.8.已知復(fù)數(shù)是正實數(shù),則實數(shù)的值為()A. B. C. D.9.甲、乙兩名學(xué)生的六次數(shù)學(xué)測驗成績(百分制)的莖葉圖如圖所示.①甲同學(xué)成績的中位數(shù)大于乙同學(xué)成績的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績的方差小于乙同學(xué)成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④10.設(shè)復(fù)數(shù)滿足為虛數(shù)單位),則()A. B. C. D.11.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π12.已知實數(shù)x,y滿足,則的最小值等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面14.設(shè)實數(shù),若函數(shù)的最大值為,則實數(shù)的最大值為______.15.若雙曲線的兩條漸近線斜率分別為,,若,則該雙曲線的離心率為________.16.若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點是線段上一動點,.給出下列四個結(jié)論:①為的重心;②;③當(dāng)時,平面;④當(dāng)三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結(jié)論的序號是________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.18.(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學(xué)”的口號,鼓勵學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績與線上學(xué)習(xí)時間之間的相關(guān)關(guān)系,對高三年級隨機選取45名學(xué)生進行跟蹤問卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學(xué)平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計線上學(xué)習(xí)時間不少于5小時419線上學(xué)習(xí)時間不足5小時合計45(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”;(2)①按照分層抽樣的方法,在上述樣本中從分?jǐn)?shù)不少于120分和分?jǐn)?shù)不足120分的兩組學(xué)生中抽取9名學(xué)生,設(shè)抽到不足120分且每周線上學(xué)習(xí)時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測數(shù)學(xué)成績不少于120分的學(xué)生中隨機抽取20人,求這些人中每周線上學(xué)習(xí)時間不少于5小時的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)19.(12分)如圖,在直三棱柱中,,點分別為和的中點.(Ⅰ)棱上是否存在點使得平面平面?若存在,寫出的長并證明你的結(jié)論;若不存在,請說明理由.(Ⅱ)求二面角的余弦值.20.(12分)在本題中,我們把具體如下性質(zhì)的函數(shù)叫做區(qū)間上的閉函數(shù):①的定義域和值域都是;②在上是增函數(shù)或者減函數(shù).(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).21.(12分)已知函數(shù)(為常數(shù))(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實數(shù)的取值范圍.22.(10分)在中,角,,所對的邊分別是,,,且.(1)求的值;(2)若,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
畫出不等式組表示的可行域,求得陰影部分扇形對應(yīng)的圓心角,根據(jù)幾何概型概率計算公式,計算出所求概率.【詳解】作出中在圓內(nèi)部的區(qū)域,如圖所示,因為直線,的傾斜角分別為,,所以由圖可得取自的概率為.故選:B【點睛】本小題主要考查幾何概型的計算,考查線性可行域的畫法,屬于基礎(chǔ)題.2、B【解析】
根據(jù)所求雙曲線的漸近線方程為,可設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標(biāo)準(zhǔn)方程為故選:B【點睛】本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.3、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得?!?選B。4、C【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意雙曲線的簡單性質(zhì)的合理運用.5、B【解析】
設(shè)點、,并設(shè)直線的方程為,由得,將直線的方程代入韋達(dá)定理,求得,結(jié)合的面積求得的值,結(jié)合焦點弦長公式可求得.【詳解】設(shè)點、,并設(shè)直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達(dá)定理得,,,,,,,,可得,,拋物線的準(zhǔn)線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點睛】本題考查拋物線焦點弦長的計算,計算出拋物線的方程是解答的關(guān)鍵,考查計算能力,屬于中等題.6、B【解析】
求出,把坐標(biāo)代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點睛】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過中心點可計算參數(shù)值.7、D【解析】
易知單調(diào)遞增,由可得唯一零點,通過已知可求得,則問題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點為,所以,∴,問題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,∴.故選D.【點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.8、C【解析】
將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實部大于零,虛部等于零,即可得到答案.【詳解】因為為正實數(shù),所以且,解得.故選:C【點睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.9、A【解析】
由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績的中位數(shù)為,乙同學(xué)成績的中位數(shù)為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學(xué)的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).10、B【解析】
易得,分子分母同乘以分母的共軛復(fù)數(shù)即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復(fù)數(shù)的乘法、除法運算,考查學(xué)生的基本計算能力,是一道容易題.11、C【解析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設(shè)M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.12、D【解析】
設(shè),,去絕對值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【詳解】因為實數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【點睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運算能力和轉(zhuǎn)化能力,意在考查學(xué)生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、π.【解析】
設(shè)三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【詳解】如圖所示,設(shè)三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設(shè)球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構(gòu)成的圖形的面積為π×O【點睛】本題考查三棱錐的外接球的相關(guān)問題,根據(jù)立體幾何中的線段關(guān)系求動點的軌跡,屬于中檔題.14、【解析】
根據(jù),則當(dāng)時,,即.當(dāng)時,顯然成立;當(dāng)時,由,轉(zhuǎn)化為,令,用導(dǎo)數(shù)法求其最大值即可.【詳解】因為,又當(dāng)時,,即.當(dāng)時,顯然成立;當(dāng)時,由等價于,令,,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.15、2【解析】
由題得,再根據(jù)求解即可.【詳解】雙曲線的兩條漸近線為,可令,,則,所以,解得.故答案為:2.【點睛】本題考查雙曲線漸近線求離心率的問題.屬于基礎(chǔ)題.16、①②③【解析】
①點在平面內(nèi)的正投影為點,而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點,連接,則點在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設(shè),則由可得,然后對應(yīng)邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當(dāng)點到平面的距離最大時,三棱錐的體積最大,而當(dāng)點與點重合時,點到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.【詳解】因為,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設(shè)由得,易得,由,則,由得,,解得,所以③正確;當(dāng)與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.故答案為:①②③【點睛】此題考查立體幾何中的垂直、平行關(guān)系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結(jié)合絕對值不等式的性質(zhì)即可證得題中的結(jié)論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.18、(1)填表見解析;有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”(2)①詳見解析②期望;方差【解析】
(1)完成列聯(lián)表,代入數(shù)據(jù)即可判斷;(2)利用分層抽樣可得的取值,進而得到概率,列出分布列;根據(jù)分析知,計算出期望與方差.【詳解】(1)分?jǐn)?shù)不少于120分分?jǐn)?shù)不足120分合計線上學(xué)習(xí)時間不少于5小時15419線上學(xué)習(xí)時間不足5小時101626合計252045有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績與學(xué)生線上學(xué)習(xí)時間有關(guān)”.(2)①由分層抽樣知,需要從不足120分的學(xué)生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學(xué)生中隨機抽取1人,此人每周上線時間不少于5小時的概率為,設(shè)從全校不少于120分的學(xué)生中隨機抽取20人,這些人中每周線上學(xué)習(xí)時間不少于5小時的人數(shù)為,則,故,.【點睛】本題考查了獨立性檢驗與離散型隨機變量的分布列、數(shù)學(xué)期望與方差的計算問題,屬于基礎(chǔ)題.19、(Ⅰ)存在點滿足題意,且,證明詳見解析;(Ⅱ).【解析】
(Ⅰ)可考慮采用補形法,取的中點為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能證明,則可得證,可通過我們反推出點對應(yīng)位置應(yīng)在處,進而得證;(Ⅱ)采用建系法,以為坐標(biāo)原點,以分別為軸建立空間直角坐標(biāo)系,分別求出兩平面對應(yīng)法向量,再結(jié)合向量夾角公式即可求解;【詳解】(Ⅰ)存在點滿足題意,且.證明如下:取的中點為,連接.則,所以平面.因為是的中點,所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),,,所以,從而可得.又因為,所以平面.因為平面,所以平面平面.(Ⅱ)如圖所示,以為坐標(biāo)原點,以分別為軸建立空間直角坐標(biāo)系.易知,,,,所以,,.設(shè)平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【點睛】本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題20、(1);(2).【解析】
(1)依據(jù)新定義,的定義域和值域都是,且在上單調(diào),建立方程求解;(2)依據(jù)新定義,討論的單調(diào)性,列出方程求解即可?!驹斀狻浚?)當(dāng)時,由復(fù)合函數(shù)單調(diào)性知,在區(qū)間上是增函數(shù),即有,解得;同理,當(dāng)時,有,解得,綜上,。(2)若在上是閉函數(shù),則在上是單調(diào)函數(shù),①當(dāng)在上是單調(diào)增函數(shù),則,解得,檢驗符合;②當(dāng)在上是單調(diào)減函數(shù),則,解得,在上不是單調(diào)函數(shù),不符合題意。故滿足在區(qū)間上是閉函數(shù)只有?!军c睛】本題主要考查學(xué)生的應(yīng)用意識,利用所學(xué)知識分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 動態(tài)調(diào)試與性能分析-全面剖析
- 室內(nèi)裝修設(shè)計服務(wù)合同
- 奢侈品名車培訓(xùn)
- 單口相聲口才課件
- LoL物品管理會計
- 小學(xué)科學(xué)實驗課評課計劃
- 旅游行業(yè)客戶服務(wù)質(zhì)量提升措施
- 化學(xué)教學(xué)游戲課件創(chuàng)意
- 八年級英語家校合作計劃
- 小學(xué)生閱讀競賽活動計劃
- 項目質(zhì)量管理機構(gòu)結(jié)構(gòu)框圖
- 保險公司首轉(zhuǎn)對團隊的意義方法課件
- TAVI(經(jīng)皮導(dǎo)管主動脈瓣植入術(shù))術(shù)后護理
- 6.3.1 平面向量基本定理 課件(共15張PPT)
- 建筑消防設(shè)施巡查記錄
- 混凝土護欄檢查記錄表
- DBJ04∕T 258-2016 建筑地基基礎(chǔ)勘察設(shè)計規(guī)范
- 綜合探究三 探尋絲綢之路(課堂運用)
- 職業(yè)危害防治實施管理臺賬
- 社會團體民辦非清算審計報告模板
- 建筑工程質(zhì)量檢測收費項目及標(biāo)準(zhǔn)表67262
評論
0/150
提交評論