版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省淄博市2025屆高二上數(shù)學期末預測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,)的左、右焦點分別為,,.若雙曲線M的右支上存在點P,使,則雙曲線M的離心率的取值范圍為()A. B.C. D.2.已知命題,命題,,則下列命題中為真命題的是A. B.C. D.3.德國數(shù)學家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進微積分概念.在研究切線時認識到,求曲線的切線的斜率依賴于縱坐標的差值和橫坐標的差值,以及當此差值變成無限小時它們的比值,這也正是導數(shù)的幾何意義.設是函數(shù)的導函數(shù),若,且對,,且總有,則下列選項正確的是()A. B.C. D.4.年月日,很多人的微信圈都在轉(zhuǎn)發(fā)這樣一條微信:“,所遇皆為對,所做皆稱心””.形如“”的數(shù)字叫“回文數(shù)”,即從左到右讀和從右到左讀都一樣的正整數(shù),則位的回文數(shù)共有()A. B.C. D.5.若向量則()A. B.3C. D.6.已知等比數(shù)列中,,前三項之和,則公比的值為()A1 B.C.1或 D.或7.已知,,若,則實數(shù)的值為()A. B.C. D.28.雙曲線的漸近線方程為A. B.C. D.9.已知拋物線C:的焦點為F,過點P(-1,0)且斜率為的直線l與拋物線C相交于A,B兩點,則()A. B.14C. D.1510.已知實數(shù)、滿足,則的最大值為()A. B.C. D.11.等差數(shù)列中,,,則當取最大值時,的值為A.6 B.7C.6或7 D.不存在12.函數(shù)的遞增區(qū)間是()A. B.和C. D.和二、填空題:本題共4小題,每小題5分,共20分。13.方程的曲線的一條對稱軸是_______,的取值范圍是______.14.已知雙曲線的漸近線上兩點A,B的中點坐標為(2,2),則直線AB的斜率是_________.15.若平面內(nèi)兩定點A,B間的距離為2,動點P滿足,則的最小值為_________.16.如圖,在三棱錐P–ABC的平面展開圖中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,則cos∠FCB=______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在空間直角坐標系中有長方體,且,,點E在棱AB上移動.(1)證明:;(2)當E為AB的中點時,求直線AC與平面所成角的正弦值.18.(12分)如圖,在正方體中,分別是,的中點.求證:(1)平面;(2)平面平面.19.(12分)在如圖所示的幾何體中,四邊形ABCD為正方形,平面ABCD,,,.(1)求證:平面PAD;(2)求直線AB與平面PCE所成角的正弦值;20.(12分)已知圓,直線(1)證明直線與圓C一定有兩個交點;(2)求直線與圓相交的最短弦長,并求對應弦長最短時的直線方程21.(12分)已知數(shù)列為等差數(shù)列,滿足,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和,并求的最大值.22.(10分)已知數(shù)列的各項均為正數(shù),,為自然對數(shù)的底數(shù)(1)求函數(shù)的單調(diào)區(qū)間,并比較與的大?。唬?)計算,,,由此推測計算的公式,并給出證明;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用三角形正弦定理結合,用a,c表示出,再由點P的位置列出不等式求解即得.【詳解】依題意,點P不與雙曲線頂點重合,在中,由正弦定理得:,因,于是得,而點P在雙曲線M的右支上,即,從而有,點P在雙曲線M的右支上運動,并且異于頂點,于是有,因此,,而,整理得,即,解得,又,故有,所以雙曲線M的離心率的取值范圍為.故選:A2、D【解析】命題是假命題,命題是真命題,根據(jù)復合命題的真值表可判斷真假.【詳解】因為,故命題是假命題,又命題是真命題,故為假,為假,為假,為真命題,故選D.【點睛】復合命題的真假判斷有如下規(guī)律:(1)或:一真比真,全假才假;(2)且:全真才真,一假比假;(3):真假相反.3、D【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以D正確,C不正確.故選:D.【點睛】本題考查以數(shù)學文化為背景,導數(shù)的幾何意義,根據(jù)函數(shù)的單調(diào)性比較函數(shù)值的大小,屬于中檔題型.4、C【解析】根據(jù)“回文數(shù)”的對稱性,只需計算前位數(shù)的排法種數(shù)即可,確定這四位數(shù)的選數(shù)的種數(shù),利用分步乘法計數(shù)原理可得結果.【詳解】根據(jù)“回文數(shù)”的對稱性,只需計算前位數(shù)的排法種數(shù)即可,首位數(shù)不能放零,首位數(shù)共有種選擇,第二位、第三位、第四位數(shù)均有種選擇,因此,位的回文數(shù)共有個.故選:C.5、D【解析】先求得,然后根據(jù)空間向量模的坐標運算求得【詳解】由于向量,,所以.故故選:D6、C【解析】根據(jù)條件列關于首項與公比的方程組,即可解得公比,注意等比數(shù)列求和公式使用條件.【詳解】等比數(shù)列中,,前三項之和,若,,,符合題意;若,則,解得,即公比的值為1或,故選:C【點睛】本題考查等比數(shù)列求和公式以及基本量計算,考查基本分析求解能力,屬基礎題.7、D【解析】由,然后根據(jù)向量數(shù)量積的坐標運算即可求解.【詳解】解:因,,所以,因為,所以,即,解得,故選:D.8、A【解析】根據(jù)雙曲線的漸近線方程知,,故選A.9、C【解析】設A、B兩點的坐標分別為,,根據(jù)拋物線的定義求出,然后將直線的方程代入拋物線方程并化簡,進而結合根與系數(shù)的關系求得答案.【詳解】設A、B兩點坐標分別為,,直線的方程為,拋物線的準線方程為:,由拋物線定義可知:.聯(lián)立方程,消去y后整理為,可得,,.故選:C.10、A【解析】作出可行域,利用代數(shù)式的幾何意義,利用數(shù)形結合可求得的最大值.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立可得,即點,代數(shù)式的幾何意義是連接可行域內(nèi)一點與定點連線的斜率,由圖可知,當點在可行域內(nèi)運動時,直線的傾斜角為銳角,當點與點重合時,直線的傾斜角最大,此時取最大值,即.故選:A.11、C【解析】設等差數(shù)列的公差為∵∴∴∴∵∴當取最大值時,的值為或故選C12、C【解析】求導后,由可解得結果.【詳解】因為的定義域為,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點睛】本題考查了利用導數(shù)求函數(shù)的增區(qū)間,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、①.x軸或直線②.【解析】根據(jù)給定條件分析方程的性質(zhì)即可求得對稱軸及x的取值范圍作答.【詳解】方程中,因,則曲線關于x軸對稱,又,解得,此時曲線與都關于直線對稱,曲線的對稱軸是x軸或直線,的取值范圍是.故答案為:x軸或直線;14、##【解析】設出直線的方程,通過聯(lián)立直線的方程和漸近線的方程,結合中點的坐標來求得直線的斜率.【詳解】雙曲線,,漸近線方程為,設直線的方程為,,由,由,所以,所以直線的斜率是.故答案為:15、【解析】建立直角坐標系,設出P的坐標,求出軌跡方程,然后推出的表達式,轉(zhuǎn)化求解最小值即可.【詳解】以經(jīng)過A,B的直線為x軸,線段AB的垂直平分線為y軸建立直角坐標系.則設,由,則,所以兩邊平方并整理得,所以P點的軌跡是以(3,0)為圓心,為半徑的圓,所以,,則有,則的最小值為.故答案為:.16、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理計算出、,可得出,然后在中利用余弦定理可求得的值.【詳解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案為:.【點睛】本題考查利用余弦定理解三角形,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)設,求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直線與平面所成角的正弦值【小問1詳解】證明:設,,,,;【小問2詳解】當為的中點時,,,設平面的法向量,則,取,得,設直線與平面所成角為,則直線與平面所成角的正弦值為:18、證明見解析【解析】(1)連接,根據(jù)線面平行的判定定理,即可證明結論成立;(2)連接,,先由線面平行的判定定理,得到平面,再由(1)的結果,結合面面平行的判定定理,即可證明結論成立.【詳解】(1)如圖,連接.∵四邊形是正方形,是的中點,∴是的中點.又∵是的中點,∴.∵平面,平面,∴平面.(2)連接,,∵四邊形是正方形,是的中點,∴是的中點.又∵是中點,∴.∵平面平面,∴平面.由(1)知平面,且,∴平面平面.【點睛】本題主要考查證明線面平行與面面平行,熟記線面平行的判定定理以及面面平行的判定定理即可,屬于??碱}型.19、(1)證明見詳解(2)【解析】(1)將線面平行轉(zhuǎn)化為面面平行,由已知易證;(2)延長相交與點F,利用等體積法求點A到平面PCE,然后由可得.【小問1詳解】四邊形ABCD為正方形平面PAD,平面PAD平面PAD同理,,平面PAD又平面,平面平面平面PAD平面平面PAD【小問2詳解】延長相交與點F,因為,所以分別為的中點.記點到平面PCF為d,直線AB與平面PCE所成角為,則.易知,,,,因為平面ABCD,所以,所以因為,所以由得:即,得所以22.20、(1)證明見解析(2)答案見解析【解析】(1)由,變形為求解直線過的定點,即可得解;(2)法一:由圓心和連線與直線垂直求解;法二:由圓心到直線距離最大時求解.【小問1詳解】解:,所以,令,所以直線經(jīng)過定點,圓可變形為,因為,所以定點在圓內(nèi),所以直線和圓C相交,有兩個交點;【小問2詳解】法一:圓心為,到距離為,圓心與連線的斜率為,最短弦與圓心和的連線垂直,所以,所以最短弦長為,直線的方程為法二:圓心到直線距離:,,要求d的最大值,則,當且僅當時,d的最大值為,所以最短弦長為,直線的方程為.21、(1)(2),45【解析】(1)由等差數(shù)列的通項列出方程組,得出通項公式;(2)先得出,再由二次函數(shù)的性質(zhì)得出最大值.【小問1詳解】由,解得,即【小問2詳解】,二次型函數(shù)開口向下,對稱軸為,則當或時,有最大值45.22、(1)的單調(diào)遞增區(qū)間為,單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 戰(zhàn)友聚會發(fā)言稿合集15篇
- 成人禮學生發(fā)言稿(范文15篇)
- 感恩父母倡議書(15篇)
- 建筑工地質(zhì)量安全會議
- 土地職業(yè)培訓平臺
- 插花入門基礎知識
- 數(shù)據(jù)專員培訓課件
- 安全健康伴我行班會
- 2025年中考復習必背歷史措施類試題答題模板
- 陰囊積液的高頻彩色多普勒超聲特征分析
- 二零二五版電力設施維修保養(yǎng)合同協(xié)議3篇
- 最經(jīng)典凈水廠施工組織設計
- VDA6.3過程審核報告
- 2024年湖南商務職業(yè)技術學院單招職業(yè)適應性測試題庫帶答案
- 骨科手術中常被忽略的操作課件
- 2024年全國各地中考試題分類匯編:作文題目
- 《糖拌西紅柿 》 教案()
- 彈性力學數(shù)值方法:解析法:彈性力學中的變分原理
- 河南省鄧州市2023-2024學年八年級上學期期末語文試題
- 網(wǎng)絡輿情應對處置培訓課件
- 物流服務項目的投標書
評論
0/150
提交評論