版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
上海市寶山區(qū)行知中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別為,為軸上一點,為正三角形,若,的中點恰好在橢圓上,則橢圓的離心率是()A. B.C. D.2.2020年12月4日,嫦娥五號探測器在月球表面第一次動態(tài)展示國旗.1949年公布的《國旗制法說明》中就五星的位置規(guī)定:大五角星有一個角尖正向上方,四顆小五角星均各有一個角尖正對大五角星的中心點.有人發(fā)現(xiàn),第三顆小星的姿態(tài)與大星相近.為便于研究,如圖,以大星的中心點為原點,建立直角坐標(biāo)系,,,,分別是大星中心點與四顆小星中心點的聯(lián)結(jié)線,,則第三顆小星的一條邊AB所在直線的傾斜角約為()A. B.C. D.3.經(jīng)過點作圓的弦,使點為弦的中點,則弦所在直線的方程為A. B.C. D.4.定義在R上的偶函數(shù)在上單調(diào)遞增,且,則滿足的x的取值范圍是()A. B.C. D.5.已知向量,,且,則的值是()A. B.C. D.6.阿基米德曾說過:“給我一個支點,我就能撬動地球”.他在做數(shù)學(xué)研究時,有一個有趣的問題:一個邊長為2的正方形內(nèi)部挖了一個內(nèi)切圓,現(xiàn)在以該內(nèi)切圓的圓心且平行于正方形的一邊的直線為軸旋轉(zhuǎn)一周形成幾何體,則該旋轉(zhuǎn)體的體積為()A. B.C. D.7.已知函數(shù),若對任意,都有成立,則a的取值范圍為()A. B.C. D.8.下列曲線中,與雙曲線有相同漸近線是()A. B.C. D.9.在正三棱錐S-ABC中,AB=4,D、E分別是SA、AB中點,且DE⊥CD,則三棱錐S-ABC外接球的體積為()A.π B.πC.π D.π10.中國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有這樣一個問題:“今有俸糧三百零五石,令五等官(正一品、從一品、正二品、從二品、正三品)依品遞差十三石分之,問,各若干?”其大意是,現(xiàn)有俸糧石,分給正一品、從一品、正二品、從二品、正三品這位官員,依照品級遞減石分這些俸糧,問,每個人各分得多少俸糧?在這個問題中,正三品分得俸糧是()A.石 B.石C.石 D.石11.直線關(guān)于直線對稱的直線方程為()A. B.C. D.12.函數(shù)的圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.方程()所表示的直線恒過定點________14.已知雙曲線的左,右焦點分別為,,右焦點到一條漸近線的距離是,則其離心率的值是______;若點P是雙曲線C上一點,滿足,,則雙曲線C的方程為______15.已知,點在軸上,且,則點的坐標(biāo)為____________.16.復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù)______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時,求的單調(diào)遞減區(qū)間;(2)若關(guān)于的方程恰有兩個不等實根,求實數(shù)的取值范圍18.(12分)已知函數(shù)在處取得極值(1)若對任意正實數(shù),恒成立,求實數(shù)的取值范圍;(2)討論函數(shù)的零點個數(shù)19.(12分)已知數(shù)列滿足,.(1)證明:數(shù)列為等差數(shù)列.(2)求數(shù)列的前項和.20.(12分)已知拋物線的焦點為,直線與拋物線的準(zhǔn)線交于點,為坐標(biāo)原點,(1)求拋物線的方程;(2)直線與拋物線交于,兩點,求的面積21.(12分)已知函數(shù)在處取得極值確定a的值;若,討論的單調(diào)性22.(10分)如圖,OP為圓錐的高,AB為底面圓O的直徑,C為圓O上一點,并且,E為劣弧上的一點,且,.(1)若E為劣弧的中點,求證:平面POE;(2)若E為劣弧的三等分點(靠近點),求平面PEO與平面PEB的夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意得,取線段的中點,則根據(jù)題意得,,根據(jù)橢圓的定義可知,然后解出離心率的值.【詳解】因為為正三角形,所以,取線段的中點,連結(jié),則,所以,得,所以橢圓的離心率.故選:A.【點睛】求解離心率及其范圍的問題時,解題的關(guān)鍵在于畫出圖形,根據(jù)題目中的幾何條件列出關(guān)于,,的齊次式,然后得到關(guān)于離心率的方程或不等式求解2、C【解析】由五角星的內(nèi)角為,可知,又平分第三顆小星的一個角,過作軸平行線,則,即可求出直線的傾斜角.【詳解】都為五角星的中心點,平分第三顆小星的一個角,又五角星的內(nèi)角為,可知,過作軸平行線,則,所以直線的傾斜角為,故選:C【點睛】關(guān)鍵點點睛:本題考查直線傾斜角,解題的關(guān)鍵是通過做輔助線找到直線的傾斜角,通過幾何關(guān)系求出傾斜角,考查學(xué)生的數(shù)形結(jié)合思想,屬于基礎(chǔ)題.3、A【解析】由題知為弦AB的中點,可得直線與過圓心和點的直線垂直,可求的斜率,然后用點斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點睛】本題考查直線與圓的位置關(guān)系,直線的斜率,直線的點斜式方程,屬于基礎(chǔ)題4、B【解析】,再根據(jù)函數(shù)的奇偶性和單調(diào)性可得或,解之即可得解.【詳解】解:,由題意可得或即或,解得或故選:B.5、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.6、B【解析】根據(jù)題意,結(jié)合圓柱和球的體積公式進(jìn)行求解即可.【詳解】由題意可知:該旋轉(zhuǎn)體的體積等于底面半徑為,高為的圓柱的體積減去半徑為的球的體積,即,故選:B7、C【解析】求出函數(shù)的導(dǎo)數(shù),再對給定不等式等價變形,分離參數(shù)借助均值不等式計算作答.【詳解】對函數(shù)求導(dǎo)得:,,,則,,而,當(dāng)且僅當(dāng),即時“=”,于是得,解得,所以a的取值范圍為.故選:C【點睛】關(guān)鍵點睛:涉及不等式恒成立問題,將給定不等式等價轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)思想是解決問題的關(guān)鍵.8、B【解析】求出已知雙曲線的漸近線方程,逐一驗證即可.【詳解】雙曲線的漸近線方程為,而雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為,雙曲線的漸近線方程為.故選:B9、C【解析】取中點,連接,證明平面,得證,然后證明平面,得兩兩垂直,以為棱把三棱錐補成一個正方體,正方體的對角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由此計算可得【詳解】取中點,連接,則,,,平面,所以平面,又平面,所以,D、E分別是SA、AB的中點,則,又,所以,,平面,所以平面,而平面,所以,,是正三棱錐,因此,因此可以為棱把三棱錐補成一個正方體,正方體的對角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由,得,所以所求外接球直徑為,半徑為,球體積為故選:C10、D【解析】令位官員(正一品、從一品、正二品、從二品、正三品)所分得的俸糧數(shù)是公差為數(shù)列,利用等差數(shù)列的前n項和求,進(jìn)而求出正三品即可.【詳解】正一品、從一品、正二品、從二品、正三品這位官員所分得的俸糧數(shù)記為數(shù)列,由題意,是以為公差的等差數(shù)列,且,解得.故正三品分得俸糧數(shù)量為(石).故選:D.11、C【解析】先聯(lián)立方程得,再求得直線的點關(guān)于直線對稱點的坐標(biāo)為,進(jìn)而根據(jù)題意得所求直線過點,,進(jìn)而得直線方程.【詳解】解:聯(lián)立方程得,即直線與直線的交點為設(shè)直線的點關(guān)于直線對稱點的坐標(biāo)為,所以,解得所以直線關(guān)于直線對稱的直線過點,所以所求直線方程的斜率為,所以所求直線的方程為,即故選:C12、A【解析】根據(jù)函數(shù)的定義域及零點的情況即可得到答案.【詳解】函數(shù)的定義域為,則排除選項、,當(dāng)時,,則在上單調(diào)遞減,且,,由零點存在定理可知在上存在一個零點,則排除,故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將方程化為,令得系數(shù)等于0,即可得到答案.【詳解】方程可化為,由,得,所以方程()所表示的直線恒過定點.故答案為:.【點睛】本題考查了直線恒過定點問題,屬于基礎(chǔ)題.14、①.##1.5②.【解析】求得焦點到漸近線的距離可得,計算即可求得離心率,由雙曲線的定義可求得,計算即可得出結(jié)果.【詳解】雙曲線的漸近線方程為,即,焦點到漸近線的距離為,又,,,,.雙曲線上任意一點到兩焦點距離之差的絕對值為,即,,即,解得:,由,解得:,.雙曲線C的方程為.故答案為:;.15、【解析】設(shè)P(0,0,z),由|PA|=|PB|,得1+4+(z?1)2=4+4+(z?2)2,解得z=3,故點P的坐標(biāo)為(0,0,3).16、##【解析】根據(jù)共軛復(fù)數(shù)的概念,即可得答案.【詳解】由題意可知:復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù),故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)求出導(dǎo)數(shù),令,得出變化情況表,即可得出單調(diào)區(qū)間;(2)分離參數(shù)得,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論單調(diào)性,根據(jù)與恰有兩個不同交點即可得出.【詳解】(1)當(dāng)時,函數(shù),則令,得,,當(dāng)x變化時,的變化情況如下表:1+00+↗極大值↘極小值↗∴在上單調(diào)遞減(2)依題意,即.則令,則當(dāng)時,,故單調(diào)遞增,且;當(dāng)時,,故單調(diào)遞減,且∴函數(shù)在處取得最大值故要使與恰有兩個不同的交點,只需∴實數(shù)a的取值范圍是【點睛】關(guān)鍵點睛:本題考查根據(jù)方程根的個數(shù)求參數(shù),解題的關(guān)鍵是參數(shù)分離,構(gòu)造函數(shù)利用導(dǎo)數(shù)討論單調(diào)性,根據(jù)函數(shù)交點個數(shù)判斷.18、(1)(2)答案見解析.【解析】(1)根據(jù)極值點求出,再利用導(dǎo)數(shù)求出的最大值,將不等式恒成立化為最大值成立可求出結(jié)果;(2)利用導(dǎo)數(shù)求出函數(shù)的極大、極小值,結(jié)合函數(shù)的圖象分類討論可得結(jié)果.【小問1詳解】函數(shù)的定義域為,因為,且在處取得極值,所以,即,得,此時,當(dāng)時,,為增函數(shù);當(dāng)時。,為減函數(shù),所以在處取得極大值,也是最大值,最大值為,因為對任意正實數(shù),恒成立,所以,得.【小問2詳解】,,由,得,由,得或,所以在上為增函數(shù),在上為減函數(shù),在上為增函數(shù),所以在時取得極大值為,在時取得極小值為,因為當(dāng)大于0趨近于0時,趨近于負(fù)無窮,當(dāng)趨近于正無窮時,趨近于正無窮,所以當(dāng),即時,有且只有一個零點;當(dāng),即時,有且只有兩個零點;當(dāng),即時,有且只有三個零點;當(dāng),即時,有且只有兩個零點;當(dāng),即時,有且只有一個零點.綜上所述:當(dāng)或時,有且只有一個零點;當(dāng)或時,有且只有兩個零點;當(dāng)時有且只有三個零點.19、(1)證明見解析(2)【解析】(1)由結(jié)合等差數(shù)列的定義證明即可;(2)由結(jié)合錯位相減法得出前項和.【小問1詳解】在兩邊同時除以,得:,,故數(shù)列是以1為首項,1為公差的等差數(shù)列;【小問2詳解】由(1)得:,,①②①②得:所以.20、(1)(2)【解析】(1)根據(jù)題意建立關(guān)于的方程,解得的值即可.(2)聯(lián)列方程組并消元,韋達(dá)定理整體思想求的長,再求點到直線的距離,進(jìn)而求面積.【小問1詳解】由題意可得,,則,因為,所以,解得,故拋物線的方程為【小問2詳解】由(1)可知,則點到直線的距離聯(lián)立,整理得設(shè),,則,從而因為直線過拋物線的焦點,所以故的面積為21、(1)(2)在和內(nèi)為減函數(shù),在和內(nèi)為增函數(shù)【解析】(1)對求導(dǎo)得,因為在處取得極值,所以,即,解得;(2)由(1)得,,故,令,解得或,當(dāng)時,,故為減函數(shù),當(dāng)時,,故為增函數(shù),當(dāng)時,,故為減函數(shù),當(dāng)時,,故為增函數(shù),綜上所知:和是函數(shù)單調(diào)減區(qū)間,和是函數(shù)的單調(diào)增區(qū)間.22、(1)證明見解析(2)【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年適用型房地產(chǎn)勞動協(xié)議范例
- 2024商鋪局部改造施工協(xié)議樣本
- 2024年數(shù)據(jù)保護(hù)與信息安全保密協(xié)議
- 2024年合作投資資金安排協(xié)議
- 2024年項目顧問協(xié)議模板詳解
- 2024非金融機構(gòu)借款協(xié)議示例
- 2024年商用中央空調(diào)購銷協(xié)議要約
- 2024年度工程設(shè)計協(xié)議格式
- 2024年定制門衛(wèi)勞務(wù)服務(wù)協(xié)議范本
- 2024年公司重組并購協(xié)議示例
- 資產(chǎn) 評估 質(zhì)量保證措施
- 小學(xué)二年級上冊道德與法治-9這些是大家的-部編ppt課件
- 《礦山機械設(shè)備》復(fù)習(xí)題
- 冷庫工程特點施工難點分析及對策
- 中國古代樓閣PPT課件
- 排舞教案_圖文
- 簡單趨向補語:V上下進(jìn)出回過起PPT課件
- 超聲檢測工藝卡
- 公司“師帶徒”實施方案
- 《內(nèi)科護(hù)理學(xué)》病例分析(完整版)
- 5GQoS管理機制介紹
評論
0/150
提交評論