版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆山東省淄博市臨淄第一中學(xué)高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知過(guò)點(diǎn)的直線l與圓相交于A,B兩點(diǎn),則的取值范圍是()A. B.C. D.2.學(xué)校開(kāi)設(shè)甲類(lèi)選修課3門(mén),乙類(lèi)選修課4門(mén),從中任選3門(mén),甲乙兩類(lèi)課程都有選擇的不同選法種數(shù)為()A.24 B.30C.60 D.1203.在數(shù)列中,若,,則()A.16 B.32C.64 D.1284.已知橢圓C:()的長(zhǎng)軸的長(zhǎng)為4,焦距為2,則C的方程為()A B.C. D.5.方程與的曲線在同一坐標(biāo)系中的示意圖應(yīng)是()A. B.C. D.6.曲線上的點(diǎn)到直線的最短距離是()A. B.C. D.17.若橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,則橢圓的離心率為()A. B.C. D.8.的二項(xiàng)展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)是第()項(xiàng).A.6 B.5C.4和6 D.5和79.已知橢圓的長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為,則橢圓上任意一點(diǎn)到橢圓中心的距離的取值范圍是()A. B.C. D.10.如圖所示,已知是橢圓的左、右焦點(diǎn),為橢圓的上頂點(diǎn),在軸上,,且是的中點(diǎn),為坐標(biāo)原點(diǎn),若點(diǎn)到直線的距離為3,則橢圓的方程為()A B.C. D.11.過(guò)橢圓+=1左焦點(diǎn)F1引直線交橢圓于A、B兩點(diǎn),F(xiàn)2是橢圓的右焦點(diǎn),則△ABF2的周長(zhǎng)是()A.20 B.18C.10 D.1612.已知空間向量,,且與互相垂直,則k的值是()A.1 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若存在實(shí)常數(shù)k和b,使得函數(shù)F(x)和G(x)對(duì)其公共定義域上的任意實(shí)數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數(shù)f(x)=x2(x∈R),g(x)(x<0),h(x)=2elnx,有下列命題:①F(x)=f(x)﹣g(x)內(nèi)單調(diào)遞增;②f(x)和g(x)之間存在“隔離直線”,且b的最小值為﹣4;③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(﹣4,0];④f(x)和h(x)之間存在唯一的“隔離直線”y=2x﹣e其中真命題為_(kāi)____(請(qǐng)?zhí)钏姓_命題的序號(hào))14.阿基米德(公元前287—公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.已知橢圓經(jīng)過(guò)點(diǎn),則當(dāng)取得最大值時(shí),橢圓的面積為_(kāi)________15.已知橢圓的左、右焦點(diǎn)分別為、,關(guān)于原點(diǎn)對(duì)稱的點(diǎn)A、B在橢圓上,且滿足,若令且,則該橢圓離心率的取值范圍為_(kāi)__________16.如圖,PD垂直于正方形ABCD所在平面,AB=2,E為PB的中點(diǎn),cos〈,〉=,若以DA,DC,DP所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,則點(diǎn)E的坐標(biāo)為_(kāi)_______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在正方體中,為棱的中點(diǎn).求證:(1)平面;(2)求直線與平面所成角的大小.18.(12分)已知等差數(shù)列的前三項(xiàng)依次為,4,,前項(xiàng)和為,且.(1)求的通項(xiàng)公式及的值;(2)設(shè)數(shù)列的通項(xiàng),求證是等比數(shù)列,并求的前項(xiàng)和.19.(12分)已知點(diǎn)及圓,點(diǎn)P是圓B上任意一點(diǎn),線段的垂直平分線l交半徑于點(diǎn)T,當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),記點(diǎn)T的軌跡為曲線E(1)求曲線E的方程;(2)設(shè)存在斜率不為零且平行的兩條直線,,它們與曲線E分別交于點(diǎn)C、D、M、N,且四邊形是菱形,求該菱形周長(zhǎng)的最大值20.(12分)已知是公差不為零等差數(shù)列,,且、、成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式:(2)設(shè).?dāng)?shù)列{}的前項(xiàng)和為,求證:21.(12分)在棱長(zhǎng)為4的正方體中,點(diǎn)分別在線段上,點(diǎn)在線段延長(zhǎng)線上,,,連接交線段于點(diǎn).(1)求證平面;(2)求異面直線所成角的余弦值.22.(10分)已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2的周長(zhǎng)為6,離心率等于.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)(4,0)的直線l交橢圓C于M、N兩點(diǎn),且OM⊥ON,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】經(jīng)判斷點(diǎn)在圓內(nèi),與半徑相連,所以與垂直時(shí)弦長(zhǎng)最短,最長(zhǎng)為直徑【詳解】將代入圓方程得:,所以點(diǎn)在圓內(nèi),連接,當(dāng)時(shí),弦長(zhǎng)最短,,所以弦長(zhǎng),當(dāng)過(guò)圓心時(shí),最長(zhǎng)等于直徑8,所以的取值范圍是故選:D2、B【解析】利用組合數(shù)計(jì)算出正確答案.【詳解】甲乙兩類(lèi)課程都有選擇的不同選法種數(shù)為.故選:B3、C【解析】根據(jù)題意,為等比數(shù)列,用基本量求解即可.【詳解】因?yàn)椋适鞘醉?xiàng)為2,公比為2的等比數(shù)列,故.故選:C4、D【解析】由題設(shè)可得求出橢圓參數(shù),即可得方程.【詳解】由題設(shè),知:,可得,則,∴C的方程為.故選:D.5、A【解析】方程即,表示拋物線,方程表示橢圓或雙曲線,當(dāng)和同號(hào)時(shí),拋物線開(kāi)口向左,方程表示焦點(diǎn)在軸的橢圓,無(wú)符合條件的選項(xiàng);當(dāng)和異號(hào)時(shí),拋物線開(kāi)口向右,方程表示雙曲線,本題選擇A選項(xiàng).6、B【解析】先求與平行且與相切的切線切點(diǎn),再根據(jù)點(diǎn)到直線距離公式得結(jié)果.【詳解】設(shè)與平行的直線與相切,則切線斜率k=1,∵∴,由,得當(dāng)時(shí),即切點(diǎn)坐標(biāo)為P(1,0),則點(diǎn)(1,0)到直線的距離就是線上的點(diǎn)到直線的最短距離,∴點(diǎn)(1,0)到直線的距離為:,∴曲線上的點(diǎn)到直線l:的距離的最小值為.故選:B7、B【解析】求出拋物線的焦點(diǎn)坐標(biāo),可得出的值,進(jìn)而可求得橢圓的離心率.【詳解】拋物線的焦點(diǎn)坐標(biāo)為,由已知可得,可得,因此,該橢圓的離心率為.故選:B.8、A【解析】由二項(xiàng)展開(kāi)的中間項(xiàng)或中間兩項(xiàng)二項(xiàng)式系數(shù)最大可得解.【詳解】因?yàn)槎?xiàng)式展開(kāi)式一共11項(xiàng),其中中間項(xiàng)的二項(xiàng)式系數(shù)最大,易知當(dāng)r=5時(shí),最大,即二項(xiàng)展開(kāi)式中,二項(xiàng)式系數(shù)最大的為第6項(xiàng).故選:A9、A【解析】不妨設(shè)橢圓的焦點(diǎn)在軸上,設(shè)點(diǎn),則,且有,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【詳解】不妨設(shè)橢圓的焦點(diǎn)在軸上,則該橢圓的標(biāo)準(zhǔn)方程為,設(shè)點(diǎn),則,且有,所以,.故選:A.10、D【解析】由題設(shè)可得,直線的方程為,點(diǎn)線距離公式表示到直線的距離,又聯(lián)立解得即可得出答案.【詳解】且,則△是等邊三角形,設(shè),則①,∴直線方程為,即,∴到直線的距離為②,又③,聯(lián)立①②③,解得,,故橢圓方程為.故選:D.11、A【解析】根據(jù)橢圓的定義求得正確選項(xiàng).【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長(zhǎng)為.故選:A12、D【解析】由=0可求解【詳解】由題意,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】①求出F(x)=f(x)﹣g(x)的導(dǎo)數(shù),檢驗(yàn)在x∈(,0)內(nèi)的導(dǎo)數(shù)符號(hào),即可判斷;②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,x2≥kx+b對(duì)一切實(shí)數(shù)x成立,即有△1≤0,又kx+b對(duì)一切x<0成立,△2≤0,k≤0,b≤0,根據(jù)不等式的性質(zhì),求出k,b的范圍,即可判斷②③;④存在f(x)和g(x)的隔離直線,那么該直線過(guò)這個(gè)公共點(diǎn),設(shè)隔離直線的斜率為k.則隔離直線,構(gòu)造函數(shù),求出函數(shù)函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)求出函數(shù)的最值【解答】解:①∵F(x)=f(x)﹣g(x)=x2,∴x∈(,0),F(xiàn)′(x)=2x0,∴F(x)=f(x)﹣g(x)在x∈(,0)內(nèi)單調(diào)遞增,故①對(duì);②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,則x2≥kx+b對(duì)一切實(shí)數(shù)x成立,即有△1≤0,k2+4b≤0,又kx+b對(duì)一切x<0成立,則kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k?﹣4≤k≤0,同理?﹣4≤b≤0,故②對(duì),③錯(cuò);④函數(shù)f(x)和h(x)的圖象在x處有公共點(diǎn),因此存在f(x)和g(x)的隔離直線,那么該直線過(guò)這個(gè)公共點(diǎn),設(shè)隔離直線的斜率為k.則隔離直線方程為y﹣e=k(x),即y=kx﹣ke,由f(x)≥kx﹣ke(x∈R),可得x2﹣kx+ke≥0當(dāng)x∈R恒成立,則△≤0,只有k=2,此時(shí)直線方程為:y=2x﹣e,下面證明h(x)≤2x﹣e,令G(x)=2x﹣e﹣h(x)=2x﹣e﹣2elnx,G′(x),當(dāng)x時(shí),G′(x)=0,當(dāng)0<x時(shí),G′(x)<0,當(dāng)x時(shí),G′(x)>0,則當(dāng)x時(shí),G(x)取到極小值,極小值是0,也是最小值所以G(x)=2x﹣e﹣g(x)≥0,則g(x)≤2x﹣e,當(dāng)x>0時(shí)恒成立∴函數(shù)f(x)和g(x)存在唯一的隔離直線y=2x﹣e,故④正確故答案為:①②④【點(diǎn)睛】本題以命題的真假判斷與應(yīng)用為載體,考查新定義,關(guān)鍵是對(duì)新定義的理解,考查函數(shù)的求導(dǎo),利用導(dǎo)數(shù)求最值,屬于難題.14、【解析】利用基本不等式得出取得最大值時(shí)的條件結(jié)合可知,再利用點(diǎn)在橢圓方程上,故可求得、的值,進(jìn)而求出橢圓的面積.詳解】由基本不等式可得,當(dāng)且僅當(dāng)時(shí)取得最大值,由可知,∵橢圓經(jīng)過(guò)點(diǎn),∴,解得,,則橢圓的面積為.故答案為:.15、【解析】由得為矩形,則,故,結(jié)合正弦函數(shù)即可求得范圍【詳解】由已知可得,且四邊形為矩形所以,又因?yàn)?,所以得離心率因?yàn)?,所以,可得,從而故答案為?6、(1,1,1)【解析】設(shè)PD=a,則D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐標(biāo)為(1,1,1)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】(1)連接,交于,連接,推導(dǎo)出,由此能證明平面.(2)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出直線與平面所成角的大小.【詳解】(1)證明:連接,交于,連接,∵在正方體中,是正方形,∴是中點(diǎn),∵為棱的中點(diǎn),∴,∵平面,平面,∴平面.(2)解:以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,設(shè)正方體中棱長(zhǎng)為2,則,,,,,,,設(shè)平面的法向量,則,取,得,設(shè)直線與平面所成角的大小為,則,∴,∴直線與平面所成角的大小為.【點(diǎn)睛】(1)求直線與平面所成的角的一般步驟:①找直線與平面所成的角,即通過(guò)找直線在平面上的射影來(lái)完成;②計(jì)算,要把直線與平面所成的角轉(zhuǎn)化到一個(gè)三角形中求解(2)作二面角的平面角可以通過(guò)垂線法進(jìn)行,在一個(gè)半平面內(nèi)找一點(diǎn)作另一個(gè)半平面的垂線,再過(guò)垂足作二面角的棱的垂線,兩條垂線確定的平面和二面角的棱垂直,由此可得二面角的平面角18、(1),(2)證明見(jiàn)解析,【解析】(1)直接利用等差中項(xiàng)的應(yīng)用求出的值,進(jìn)一步求出數(shù)列的通項(xiàng)公式和的值;(2)利用等比數(shù)列的定義即可證明數(shù)列為等比數(shù)列,進(jìn)一步求出數(shù)列的和.【小問(wèn)1詳解】等差數(shù)列的前三項(xiàng)依次為,4,,∴,解得;故首項(xiàng)為2,公差為2,故,前項(xiàng)和為,且,整理得,解得或-11(負(fù)值舍去).∴,k=10.【小問(wèn)2詳解】由(1)得:,故(常數(shù)),故數(shù)列是等比數(shù)列;∴.19、(1)(2)【解析】(1)根據(jù)橢圓的定義和性質(zhì),建立方程求出,即可(2)設(shè)的方程為,,,,,設(shè)的方程為,,,,,分別聯(lián)立直線方程和橢圓方程,運(yùn)用韋達(dá)定理和判別式大于0,以及弦長(zhǎng)公式,求得,,運(yùn)用菱形和橢圓的對(duì)稱性可得,關(guān)于原點(diǎn)對(duì)稱,結(jié)合菱形的對(duì)角線垂直和向量數(shù)量積為0,可得,設(shè)菱形的周長(zhǎng)為,運(yùn)用基本不等式,計(jì)算可得所求最大值【小問(wèn)1詳解】點(diǎn)在線段的垂直平分線上,,又,曲線是以坐標(biāo)原點(diǎn)為中心,和為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓設(shè)曲線的方程為,,,曲線的方程為【小問(wèn)2詳解】設(shè)的方程為,,,,,設(shè)的方程為,,,,,聯(lián)立可得,由可得,化簡(jiǎn)可得,①,,,同理可得,因?yàn)樗倪呅螢榱庑?,所以,所以,又因?yàn)?,所以,所以,關(guān)于原點(diǎn)對(duì)稱,又橢圓關(guān)于原點(diǎn)對(duì)稱,所以,關(guān)于原點(diǎn)對(duì)稱,,也關(guān)于原點(diǎn)對(duì)稱,所以且,所以,,,,因?yàn)樗倪呅螢榱庑?,可得,即,即,即,可得,化?jiǎn)可得,設(shè)菱形的周長(zhǎng)為,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,此時(shí),滿足①,所以菱形的周長(zhǎng)的最大值為【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:在處理此類(lèi)直線與橢圓相交問(wèn)題中,一般先設(shè)出直線方程,聯(lián)立方程,利用韋達(dá)定理得出,,再具體問(wèn)題具體分析,一般涉及弦長(zhǎng)計(jì)算問(wèn)題,運(yùn)算比較繁瑣,需要較強(qiáng)的運(yùn)算能力,屬于難題。20、(1);(2)證明見(jiàn)解析.【解析】(1)設(shè)等差數(shù)列的公差為,則,根據(jù)題意可得出關(guān)于的方程,求出的值,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)相消法求出,即可證得結(jié)論成立.【小問(wèn)1詳解】解:設(shè)等差數(shù)列的公差為,則,由題意可得,即,整理可得,,解得,因此,.【小問(wèn)2詳解】證明:,因此,,故原不等式得證.21、(1)證明見(jiàn)解析(2)【解析】(1)由線面平行的判定定理證明;(2)建立空間直角坐標(biāo)系,用空間向量法求異面直線所成的角【小問(wèn)1詳解】證明:且,由三角形相似可得,,,又,,又平面,平面平面;【小問(wèn)2詳解】解:以為坐標(biāo)原點(diǎn),分別以為軸建立空間坐標(biāo)系,如圖.則設(shè)異面直線所成角為,則22、(1);(2)或.【解析】(1)由條件得,再結(jié)合,可求得橢圓方程;(2)由題意設(shè)直線l:x=my+4,設(shè)M(x1,y1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高新技術(shù)產(chǎn)品銷(xiāo)售合同管理規(guī)定2篇
- 二零二五年度游艇購(gòu)置及保養(yǎng)維修協(xié)議3篇
- 2025版智能節(jié)能鋁合金門(mén)窗研發(fā)與推廣合作協(xié)議4篇
- 2025年項(xiàng)目抵押貸款合同范本解讀與實(shí)操6篇
- 2025版醫(yī)療器械融資委托擔(dān)保合同樣本3篇
- 二零二五年度貨車(chē)貨運(yùn)保險(xiǎn)與物流行業(yè)信用評(píng)估合同
- 2025年度智能機(jī)器人銷(xiāo)售與技術(shù)支持協(xié)議3篇
- 2025版新型綠色建筑材料供應(yīng)及施工合同4篇
- 2025版中英外教專業(yè)能力培訓(xùn)與雇傭合同3篇
- 個(gè)體資金借入合同:固定期限還款合同版
- 圖像識(shí)別領(lǐng)域自適應(yīng)技術(shù)-洞察分析
- 個(gè)體戶店鋪?zhàn)赓U合同
- 新概念英語(yǔ)第二冊(cè)考評(píng)試卷含答案(第49-56課)
- 【奧運(yùn)會(huì)獎(jiǎng)牌榜預(yù)測(cè)建模實(shí)證探析12000字(論文)】
- 保安部工作計(jì)劃
- 2023痛風(fēng)診療規(guī)范(完整版)
- (完整word版)企業(yè)對(duì)賬函模板
- 土力學(xué)與地基基礎(chǔ)(課件)
- 主要負(fù)責(zé)人重大隱患帶隊(duì)檢查表
- 魯濱遜漂流記人物形象分析
- 危險(xiǎn)廢物貯存?zhèn)}庫(kù)建設(shè)標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論