版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆福建省福州市第十一中學(xué)高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在等差數(shù)列中,,則()A.6 B.3C.2 D.12.已知圓的圓心在軸上,半徑為2,且與直線相切,則圓的方程為A. B.或C. D.或3.已知直線與直線垂直,則實(shí)數(shù)a為()A. B.或C. D.或4.已知雙曲線,過(guò)點(diǎn)作直線l,若l與該雙曲線只有一個(gè)公共點(diǎn),這樣的直線條數(shù)為()A.1 B.2C.3 D.45.若雙曲線的焦距為,則雙曲線的漸近線方程為()A. B.C. D.6.中國(guó)古代有一道數(shù)學(xué)題:“今有七人差等均錢,甲、乙均七十七文,戊、己、庚均七十五文,問(wèn)戊、己各若干?”意思是甲、乙、丙、丁、戊、己、庚七個(gè)人分錢,所分得的錢數(shù)構(gòu)成等差數(shù)列,甲、乙兩人共分得77文,戊、己、庚三人共分得75文,則戊、己兩人各分得多少文錢?則下列說(shuō)法正確的是()A.戊分得34文,己分得31文 B.戊分得31文,己分得34文C.戊分得28文,己分得25文 D.戊分得25文,己分得28文7.已知空間向量,,,下列命題中正確的個(gè)數(shù)是()①若與共線,與共線,則與共線;②若,,非零且共面,則它們所在的直線共面;⑧若,,不共面,那么對(duì)任意一個(gè)空間向量,存在唯一有序?qū)崝?shù)組,使得;④若,不共線,向量,則可以構(gòu)成空間的一個(gè)基底.A.0 B.1C.2 D.38.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于9.已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,若,則公比()A. B.2C.2或 D.410.設(shè)橢圓C:的左、右焦點(diǎn)分別為、,P是C上的點(diǎn),⊥,∠=,則C的離心率為A. B.C. D.11.在中,,,且BC邊上的高為,則滿足條件的的個(gè)數(shù)為()A.3 B.2C.1 D.012.在試驗(yàn)“甲射擊三次,觀察中靶的情況”中,事件A表示隨機(jī)事件“至少中靶1次”,事件B表示隨機(jī)事件“正好中靶2次”,事件C表示隨機(jī)事件“至多中靶2次”,事件D表示隨機(jī)事件“全部脫靶”,則()A.A與C是互斥事件 B.B與C是互斥事件C.A與D是對(duì)立事件 D.B與D是對(duì)立事件二、填空題:本題共4小題,每小題5分,共20分。13.若命題“,不等式恒成立”為真命題,則實(shí)數(shù)a的取值范圍是________.14.已知雙曲線的焦點(diǎn),過(guò)F且斜率為1的直線與雙曲線有且只有一個(gè)交點(diǎn),則雙曲線的方程為_________15.已知橢圓和雙曲線有相同的焦點(diǎn)和,設(shè)橢圓和雙曲線的離心率分別為,,P為兩曲線的一個(gè)公共點(diǎn),且(O為坐標(biāo)原點(diǎn)).若,則的取值范圍是______16.已知函數(shù)的圖象與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,則的外接圓E的方程是________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓,直線,直線l與圓C相交于P,Q兩點(diǎn)(1)求的最小值;(2)當(dāng)?shù)拿娣e最大時(shí),求直線l的方程18.(12分)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且.(1)求角C的大??;(2)若,求△ABC面積的最大值.19.(12分)從某居民區(qū)隨機(jī)抽取2021年的10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,計(jì)算得,,,(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;(2)判斷變量與之間是正相關(guān)還是負(fù)相關(guān);(3)利用(1)中的回歸方程,分析2021年該地區(qū)居民月收入與月儲(chǔ)蓄之間的變化情況,并預(yù)測(cè)當(dāng)該居民區(qū)某家庭月收入為7千元,該家庭的月儲(chǔ)蓄額.附:線性回歸方程系數(shù)公式中,,,其中,為樣本平均值20.(12分)某工廠修建一個(gè)長(zhǎng)方體無(wú)蓋蓄水池,其容積為4800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長(zhǎng)方形長(zhǎng)為x米(1)求底面積,并用含x的表達(dá)式表示池壁面積;(2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?21.(12分)已知點(diǎn)在拋物線()上,過(guò)點(diǎn)A且斜率為1直線與拋物線的另一個(gè)交點(diǎn)為B(1)求p的值和拋物線的焦點(diǎn)坐標(biāo);(2)求弦長(zhǎng)22.(10分)在數(shù)列中,,且.(1)證明;數(shù)列是等比數(shù)列.(2)若,求數(shù)列的前n項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)等差數(shù)列下標(biāo)性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭堑炔顢?shù)列,所以,故選:B2、D【解析】設(shè)圓心坐標(biāo),由點(diǎn)到直線距離公式可得或,進(jìn)而求得答案【詳解】設(shè)圓心坐標(biāo),因?yàn)閳A與直線相切,所以由點(diǎn)到直線的距離公式可得,解得或.因此圓的方程為或.【點(diǎn)睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,屬于一般題3、B【解析】由題可得,即得.【詳解】∵直線與直線垂直,∴,解得或.故選:B.4、D【解析】先確定雙曲線的右頂點(diǎn),再分垂直軸、與軸不垂直兩種情況討論,當(dāng)與軸不垂直時(shí),可設(shè)直線方程為,聯(lián)立直線與拋物線方程,消元整理,再分、兩種情況討論,即可得解【詳解】解:根據(jù)雙曲線方程可知右頂點(diǎn)為,使與有且只有一個(gè)公共點(diǎn)情況為:①當(dāng)垂直軸時(shí),此時(shí)過(guò)點(diǎn)的直線方程為,與雙曲線只有一個(gè)公共點(diǎn),②當(dāng)與軸不垂直時(shí),可設(shè)直線方程為聯(lián)立方程可得當(dāng)即時(shí),方程只有一個(gè)根,此時(shí)直線與雙曲線只有一個(gè)公共點(diǎn),當(dāng)時(shí),,整理可得即故選:D5、A【解析】由焦距為可得,又,進(jìn)而可得,最后根據(jù)焦點(diǎn)在軸上的雙曲線的漸近線方程為即可求解.【詳解】解:因?yàn)殡p曲線的焦距為,所以,所以,解得,所以,所以雙曲線的漸近線方程為,即,故選:A.6、C【解析】設(shè)甲、乙、丙、丁、戊、己、庚所分錢數(shù)分別為,,,,,,,再根據(jù)題意列方程組可解得結(jié)果.【詳解】依題意,設(shè)甲、乙、丙、丁、戊、己、庚所分錢數(shù)分別為,,,,,,,則,解得,所以戊分得(文),己分得(文),故選:C.7、B【解析】用向量共線或共面的基本定理即可判斷.【詳解】若與,與共線,,則不能判定,故①錯(cuò)誤;若非零向量共面,則向量可以在一個(gè)與組成的平面平行的平面上,故②錯(cuò)誤;不共面,意味著它們都是非零向量,可以作為一組基底,故③正確;,∴與共面,故不能組成一個(gè)基底,故④錯(cuò)誤;故選:C.8、D【解析】由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D考點(diǎn):平面與平面的位置關(guān)系,平面的基本性質(zhì)及其推論9、B【解析】由兩式相除即可求公比.【詳解】設(shè)等比數(shù)列的公比為q,∵其各項(xiàng)均為正數(shù),故q>0,∵,∴,又∵,∴=4,則q=2.故選:B.10、D【解析】詳解】由題意可設(shè)|PF2|=m,結(jié)合條件可知|PF1|=2m,|F1F2|=m,故離心率e=選D.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問(wèn)題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.11、B【解析】利用等面積法求得,再利用正弦定理求得,利用內(nèi)角和的關(guān)系及兩角和差化積公式,二倍角公式轉(zhuǎn)化為,再利用正弦函數(shù)的性質(zhì)求滿足條的的個(gè)數(shù),即可求解.【詳解】由三角形的面積公式知,即由正弦定理知所以,即,即,即利用兩角和的正弦公式結(jié)合二倍角公式化簡(jiǎn)得又,則,,且由正弦函數(shù)的性質(zhì)可知,滿足的有2個(gè),即滿足條件的的個(gè)數(shù)為2.故選:B12、C【解析】根據(jù)互斥事件、對(duì)立事件的定義即可求解.【詳解】解:因?yàn)锳與C,B與C可能同時(shí)發(fā)生,故選項(xiàng)A、B不正確;B與D不可能同時(shí)發(fā)生,但B與D不是事件的所有結(jié)果,故選項(xiàng)D不正確;A與D不可能同時(shí)發(fā)生,且A與D為事件的所有結(jié)果,故選項(xiàng)C正確故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【詳解】解:因?yàn)?,不等式恒成立,只要即可,因?yàn)?,所以,則,當(dāng)且僅當(dāng),即時(shí)取等號(hào),所以,所以.故答案為:.14、【解析】根據(jù)直線與雙曲線只有一個(gè)交點(diǎn)可知直線與雙曲線平行,由漸近線斜率可列出的齊次方程,利用齊次方程求解.【詳解】直線與雙曲線有且只有一個(gè)交點(diǎn),且焦點(diǎn),直線與雙曲線漸近線平行,,即,,即,.則雙曲線的方程為故答案為:15、【解析】設(shè)出半焦距c,用表示出橢圓的長(zhǎng)半軸長(zhǎng)、雙曲線的實(shí)半軸長(zhǎng),由可得為直角三角形,由此建立關(guān)系即可計(jì)算作答.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的實(shí)半軸長(zhǎng)為,它們的半焦距為c,于是得,,由橢圓及雙曲線的對(duì)稱性知,不妨令焦點(diǎn)和在x軸上,點(diǎn)P在y軸右側(cè),由橢圓及雙曲線定義得:,解得,,因,即,而O是線段的中點(diǎn),因此有,則有,即,整理得:,從而有,即有,又,則有,即,解得,所以的取值范圍是.故答案:16、【解析】由題可求三角形三頂點(diǎn)的坐標(biāo),三角形的外接圓的方程即求.【詳解】令,得或,則,∴外接圓的圓心的橫坐標(biāo)為2,設(shè),半徑為r,由,得,則,即,得,.∴的外接圓的方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)4;(2)或.【解析】(1)過(guò)定點(diǎn)D(4,2),當(dāng)CD⊥l時(shí),|PQ|最??;(2),當(dāng)時(shí),△CPQ面積最大,此時(shí)△CPQ為等腰直角三角形,圓心到直線l的距離,據(jù)此即可求出m.【小問(wèn)1詳解】由,得,由,∴直線l過(guò)定點(diǎn)D(4,2),∵,∴在圓C內(nèi)部,∴直線和l與圓C相交,當(dāng)CD⊥l時(shí),|PQ|最小,;【小問(wèn)2詳解】∵,∴當(dāng)時(shí),△CPQ面積最大,此時(shí)△CPQ為等腰直角三角形,故圓心到直線l的距離,∴,解得,∴此時(shí)l的方程為:或.18、(1)(2)【解析】(1)對(duì),利用正弦定理和誘導(dǎo)公式整理化簡(jiǎn)得到,即可求出;(2)先由正弦定理求出c,再由余弦定理和基本不等式求出ab的最大值為1,代入面積公式求面積.【小問(wèn)1詳解】對(duì)于.由正弦定理知:即.所以.所以.所以因?yàn)?,,所?所以.因?yàn)?,所?【小問(wèn)2詳解】因?yàn)?,由正弦定理知?由余弦定理知:,所以.當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以ab的最大值為1.所以,即面積的最大值為.19、(1)=0.3x-0.4(2)正相關(guān)(3)1.7千元【解析】(1)由題意得到n=10,求得,進(jìn)而求得,寫出回歸方程;.(2)由判斷;(3)將x=7代入回歸方程求解.【小問(wèn)1詳解】由題意知n=10,,則,所以所求回歸方程為=0.3x-0.4.【小問(wèn)2詳解】因?yàn)?,所以變量y的值隨x的值增加而增加,故x與y之間是正相關(guān).【小問(wèn)3詳解】將x=7代入回歸方程可以預(yù)測(cè)該家庭的月儲(chǔ)蓄為=0.3×7-0.4=1.7(千元).20、(1)1600,(平方米);(2)池底設(shè)計(jì)為邊長(zhǎng)40米的正方形時(shí)總造價(jià)最低,最低造價(jià)為268800元.【解析】(1)根據(jù)題意,由于修建一個(gè)長(zhǎng)方體無(wú)蓋蓄水池,其容積為4800立方米,深度為3米可得底面積為1600,池壁面積s=.(2)同時(shí)池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元設(shè)池底長(zhǎng)方形長(zhǎng)為x米,則可知總造價(jià)s=,x=40時(shí),則.故可知當(dāng)x=40時(shí),則有可使得總造價(jià)最低,最低造價(jià)是268800元.考點(diǎn):不等式求解最值點(diǎn)評(píng):主要是考查了不等式求解最值的運(yùn)用,屬于基礎(chǔ)題.21、(1),焦點(diǎn)坐標(biāo)(2)【解析】(1)將點(diǎn)的坐標(biāo)代入拋物線的方程,可求得的值,進(jìn)而可得拋物線的焦點(diǎn)坐標(biāo);(2)寫出直
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【《初中歷史人物教學(xué)探究》14000字(論文)】
- 2024年學(xué)校安全工作總結(jié)參考(四篇)
- 2024年學(xué)困生幫扶工作計(jì)劃例文(三篇)
- 2024年司機(jī)崗位職責(zé)模版(五篇)
- 2024年大學(xué)秘書部工作計(jì)劃(四篇)
- 2024年商品混凝土運(yùn)輸合同(三篇)
- 2024年學(xué)前班班主任的工作計(jì)劃樣本(三篇)
- 2024年小學(xué)跳繩興趣小組活動(dòng)計(jì)劃(二篇)
- 2024年小班班級(jí)工作總結(jié)(三篇)
- 鋰硫電池行業(yè)專利分析報(bào)告
- CA碼生成原理及matlab程序?qū)崿F(xiàn)
- 新視野大學(xué)英語(yǔ)視聽說(shuō)教程ppt課件
- 攻城掠地?cái)?shù)據(jù)以及sdata文件修改教程
- 醫(yī)療廢物轉(zhuǎn)運(yùn)箱消毒記錄表
- 最新投標(biāo)書密封條
- 看守所崗位職責(zé)
- Sentaurus在ESD防護(hù)器件設(shè)計(jì)中的應(yīng)用PPT課件
- 《拋物線焦點(diǎn)弦的性質(zhì)探究》學(xué)案
- 人教版小學(xué)二年級(jí)數(shù)學(xué)上冊(cè)全冊(cè)教案【表格式】
- 佛山嶺南新天地項(xiàng)目概況.
- 噴碼機(jī)操作手冊(cè)
評(píng)論
0/150
提交評(píng)論