浙江省杭州市七縣區(qū)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁(yè)
浙江省杭州市七縣區(qū)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁(yè)
浙江省杭州市七縣區(qū)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁(yè)
浙江省杭州市七縣區(qū)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁(yè)
浙江省杭州市七縣區(qū)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省杭州市七縣區(qū)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列說(shuō)法正確的是()A.空間中的任意三點(diǎn)可以確定一個(gè)平面B.四邊相等的四邊形一定是菱形C.兩條相交直線(xiàn)可以確定一個(gè)平面D.正四棱柱的側(cè)面都是正方形2.已知等比數(shù)列各項(xiàng)均為正數(shù),且,,成等差數(shù)列,則()A. B.C. D.3.函數(shù)單調(diào)減區(qū)間是()A. B.C.和 D.4.若方程表示雙曲線(xiàn),則()A. B.C. D.5.已知橢圓是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),設(shè)以為對(duì)角線(xiàn)的橢圓內(nèi)接平行四邊形的一組鄰邊斜率分別為,則()A.1 B.C. D.6.若的解集是,則等于()A.-14 B.-6C.6 D.147.如圖,在三棱柱中,為的中點(diǎn),若,,,則下列向量與相等的是()A. B.C. D.8.某地為應(yīng)對(duì)極端天氣搶險(xiǎn)救災(zāi),需調(diào)用A,B兩種卡車(chē),其中A型卡車(chē)x輛,B型卡車(chē)y輛,以備不時(shí)之需,若x和y滿(mǎn)足約束條件則最多需調(diào)用卡車(chē)的數(shù)量為()A.7 B.9C.13 D.149.已知,是橢圓的左,右焦點(diǎn),是的左頂點(diǎn),點(diǎn)在過(guò)且斜率為的直線(xiàn)上,為等腰三角形,,則的離心率為A. B.C. D.10.有一組樣本數(shù)據(jù)、、、,由這組數(shù)據(jù)得到新樣本數(shù)據(jù)、、、,其中,為非零常數(shù),則()A.兩組樣本數(shù)據(jù)的樣本平均數(shù)相同 B.兩組樣本數(shù)據(jù)的樣本標(biāo)準(zhǔn)差相同C.兩組樣本數(shù)據(jù)的樣本中位數(shù)相同 D.兩組樣本數(shù)據(jù)的樣本眾數(shù)相同11.已知是兩個(gè)數(shù)1,9的等比中項(xiàng),則圓錐曲線(xiàn)的離心率為()A.或 B.或C. D.12.設(shè)為等差數(shù)列的前項(xiàng)和,若,,則公差的值為()A. B.2C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列{}的前n項(xiàng)和為,則該數(shù)列的通項(xiàng)公式__________.14.某n重伯努利試驗(yàn)中,事件A發(fā)生的概率為p,事件A發(fā)生的次數(shù)記為X,,,則______15.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)設(shè)上存在極大值M,證明:.16.已知焦點(diǎn)在軸上的雙曲線(xiàn),其漸近線(xiàn)方程為,焦距為,則該雙曲線(xiàn)的標(biāo)準(zhǔn)方程為_(kāi)_______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)若不等式的解集為,求實(shí)數(shù)的取值范圍.18.(12分)在如圖三角形數(shù)陣中第n行有n個(gè)數(shù),表示第i行第j個(gè)數(shù),例如,表示第4行第3個(gè)數(shù).該數(shù)陣中每一行的第一個(gè)數(shù)從上到下構(gòu)成以m為公差的等差數(shù)列,從第三行起每一行的數(shù)從左到右構(gòu)成以m為公比的等比數(shù)列(其中).已知.(1)求m及;(2)記,求.19.(12分)已知各項(xiàng)為正數(shù)的等比數(shù)列中,,.(1)求數(shù)列通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和.20.(12分)已知函數(shù),且a0(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;(2)記函數(shù),若函數(shù)有兩個(gè)零點(diǎn),①求實(shí)數(shù)a的取值范圍;②證明:21.(12分)已知,,函數(shù),直線(xiàn)是函數(shù)圖象的一條對(duì)稱(chēng)軸(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;(2)若,,的面積為,求的周長(zhǎng)22.(10分)如圖,四棱柱的底面為正方形,平面,,,點(diǎn)在上,且.(1)求證:;(2)求直線(xiàn)與平面所成角的正弦值;(3)求平面與平面夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)立體幾何相關(guān)知識(shí)對(duì)各選項(xiàng)進(jìn)行判斷即可.【詳解】對(duì)于A,根據(jù)公理2及推論可知,不共線(xiàn)的三點(diǎn)確定一個(gè)平面,故A錯(cuò)誤;對(duì)于B,在一個(gè)平面內(nèi),四邊相等的四邊形才一定是菱形,故B錯(cuò)誤;對(duì)于C,根據(jù)公理2及推論可知,兩條相交直線(xiàn)可以確定一個(gè)平面,故C正確;對(duì)于D,正四棱柱指上、下底面都是正方形且側(cè)棱垂直于底面的棱柱,側(cè)面可以是矩形,故D錯(cuò)誤.故選:C2、A【解析】結(jié)合等差數(shù)列的性質(zhì)求得公比,然后由等比數(shù)列的性質(zhì)得結(jié)論【詳解】設(shè)的公比為,因?yàn)椋?,成等差?shù)列,所以,即,,或(舍去,因?yàn)閿?shù)列各項(xiàng)為正)所以故選:A3、B【解析】根據(jù)函數(shù)求導(dǎo),然后由求解.【詳解】因?yàn)楹瘮?shù),所以,由,解得,所以函數(shù)的單調(diào)遞減區(qū)間是,故選:B4、C【解析】根據(jù)曲線(xiàn)方程表示雙曲線(xiàn)方程有,即可求參數(shù)范圍.【詳解】由題設(shè),,可得.故選:C.5、C【解析】根據(jù)橢圓的對(duì)稱(chēng)性和平行四邊形的性質(zhì)進(jìn)行求解即可.【詳解】是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)兩點(diǎn),所以不妨設(shè),即,因?yàn)槠叫兴倪呅我彩侵行膶?duì)稱(chēng)圖形,所以也是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),所以不妨設(shè),即,,得:,即,故選:C6、A【解析】由一元二次不等式的解集,結(jié)合根與系數(shù)關(guān)系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.7、A【解析】利用空間向量基本定理求解即可【詳解】由于M是的中點(diǎn),所以故選:A8、B【解析】畫(huà)出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義即可求解【詳解】設(shè)調(diào)用卡車(chē)的數(shù)量為z,則,其中x和y滿(mǎn)足約束條件,作出可行域如圖所示:當(dāng)目標(biāo)函數(shù)經(jīng)過(guò)時(shí),縱截距最大,最大.故選:B9、D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關(guān)系,即得離心率.詳解:因?yàn)榈妊切?,,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.點(diǎn)睛:解決橢圓和雙曲線(xiàn)的離心率的求值及范圍問(wèn)題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線(xiàn)的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.10、B【解析】利用平均數(shù)公式可判斷A選項(xiàng);利用標(biāo)準(zhǔn)差公式可判斷B選項(xiàng);利用中位數(shù)的定義可判斷C選項(xiàng);利用眾數(shù)的定義可判斷D選項(xiàng).【詳解】對(duì)于A選項(xiàng),設(shè)數(shù)據(jù)、、、的平均數(shù)為,數(shù)據(jù)、、、的平均數(shù)為,則,A錯(cuò);對(duì)于B選項(xiàng),設(shè)數(shù)據(jù)、、、的標(biāo)準(zhǔn)差為,數(shù)據(jù)、、、的標(biāo)準(zhǔn)差為,,B對(duì);對(duì)于C選項(xiàng),設(shè)數(shù)據(jù)、、、中位數(shù)為,數(shù)據(jù)、、、的中位數(shù)為,不妨設(shè),則,若為奇數(shù),則,;若為偶數(shù),則,.綜上,,C錯(cuò);對(duì)于D選項(xiàng),設(shè)數(shù)據(jù)、、、的眾數(shù)為,則數(shù)據(jù)、、、的眾數(shù)為,D錯(cuò).故選:B.11、A【解析】根據(jù)題意可知,當(dāng)時(shí),根據(jù)橢圓離心率公式,即可求出結(jié)果;當(dāng)時(shí),根據(jù)雙曲線(xiàn)離心率公式,即可求出結(jié)果.【詳解】因?yàn)槭莾蓚€(gè)數(shù)1,9的等比中項(xiàng),所以,所以,當(dāng)時(shí),圓錐曲線(xiàn),其離心率為;當(dāng)時(shí),圓錐曲線(xiàn),其離心率為;綜上,圓錐曲線(xiàn)的離心率為或.故選:A.12、C【解析】根據(jù)等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可.【詳解】,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、2n+1【解析】由計(jì)算,再計(jì)算可得結(jié)論【詳解】由題意時(shí),,又適合上式,所以故答案為:【點(diǎn)睛】本題考查由求通項(xiàng)公式,解題根據(jù)是,但要注意此式不含,14、##0.2【解析】根據(jù)二項(xiàng)分布的均值和方差的計(jì)算公式可求解【詳解】依題意得X服從二項(xiàng)分布,則,解得,故答案為:15、(1)在單調(diào)遞增,單調(diào)遞減;(2)詳見(jiàn)解析.【解析】(1)求得,利用和即可求得函數(shù)的單調(diào)性區(qū)間;(2)求得函數(shù)的解析式,求,對(duì)的情況進(jìn)行分類(lèi)討論得到函數(shù)有極大值的情形,再結(jié)合極大值點(diǎn)的定義進(jìn)行替換、即可求解.【詳解】(1)由題意,函數(shù),則,當(dāng)時(shí),令,所以函數(shù)單調(diào)遞增;當(dāng)時(shí),令,即,解得或,令,即,解得,所以函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間中單調(diào)遞減,當(dāng)時(shí),令,即,解得或,令,即,解得,所以函數(shù)在單調(diào)遞增,在單調(diào)遞減.(2)由函數(shù),則,令,可得令,解得,當(dāng)時(shí).,函數(shù)在單調(diào)遞增,此時(shí),所以,函數(shù)在上單調(diào)遞增,此時(shí)不存在極大值,當(dāng)時(shí),令解得,令,解得,所以上單調(diào)遞減,在上單調(diào)遞增,因?yàn)樵谏洗嬖跇O大值,所以,解得,因?yàn)?,易證明,存在時(shí),,存在使得,當(dāng)在區(qū)間上單調(diào)遞增,在區(qū)間單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得極大值,即,,由,所以【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,以及不等式的證明,著重考查了轉(zhuǎn)化與化歸思想、分類(lèi)討論、及邏輯推理能力與計(jì)算能力,對(duì)于此類(lèi)問(wèn)題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題16、【解析】根據(jù)漸近線(xiàn)方程、焦距可得,,再根據(jù)雙曲線(xiàn)參數(shù)關(guān)系、焦點(diǎn)的位置寫(xiě)出雙曲線(xiàn)標(biāo)準(zhǔn)方程.詳解】由題設(shè),可知:,,∴由,可得,,又焦點(diǎn)在軸上,∴雙曲線(xiàn)的標(biāo)準(zhǔn)方程為.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】(1)將不等式分解因式,即可求得不等式解集;(2)根據(jù)不等式解集,考慮其對(duì)應(yīng)二次函數(shù)的特征,即可求出參數(shù)的范圍.【小問(wèn)1詳解】當(dāng)時(shí),即,也即,則,解得或,故不等式解集為.【小問(wèn)2詳解】不等式的解集為,即的解集為,也即的解集為,故其對(duì)應(yīng)二次函數(shù)的,解得.故實(shí)數(shù)的取值范圍為:.18、(1),;(2)【解析】(1)根據(jù)題意以m表示出,由即可求出,進(jìn)而求出;(2)根據(jù)等差數(shù)列和等比數(shù)列的通項(xiàng)公式求出,再利用錯(cuò)位相減法即可求出.【詳解】(1)由已知得,,,,,即,又,,,;(2)由(1)得,當(dāng)時(shí),,又,,滿(mǎn)足,,,兩式相減得,.【點(diǎn)睛】方法點(diǎn)睛:數(shù)列求和的常用方法:(1)對(duì)于等差等比數(shù)列,利用公式法可直接求解;(2)對(duì)于結(jié)構(gòu),其中是等差數(shù)列,是等比數(shù)列,用錯(cuò)位相減法求和;(3)對(duì)于結(jié)構(gòu),利用分組求和法;(4)對(duì)于結(jié)構(gòu),其中是等差數(shù)列,公差為,則,利用裂項(xiàng)相消法求和.19、(1);(2)【解析】(1)根據(jù)條件求出即可;(2),然后利用等差數(shù)列的求和公式求出答案即可.【詳解】(1)且,,(2)20、(1)函數(shù)f(x)在區(qū)間(0,+)上單調(diào)遞減(2)①;②證明見(jiàn)解析【解析】(1)求導(dǎo),求解可得導(dǎo)函數(shù)恒小于等于0,即得證;(2)①分析函數(shù)的單調(diào)性,由有兩個(gè)實(shí)數(shù)根可求解;②由(1)得2lnxx?,再利用其放縮可得,由此有,問(wèn)題得證.【小問(wèn)1詳解】當(dāng)a=1時(shí),函數(shù)因?yàn)樗院瘮?shù)f(x)在區(qū)間(0,+)上單調(diào)遞減;【小問(wèn)2詳解】(i)由已知可得方程有兩個(gè)實(shí)數(shù)根記,則.當(dāng)時(shí),,函數(shù)k(x)是增函數(shù);當(dāng)時(shí),,函數(shù)k(x)是減函數(shù),所以,故(ii)易知,當(dāng)x1時(shí),,故.由(1)可知,當(dāng)0x1時(shí),,所以2lnxx?由,得,所以因?yàn)?,所?1、(1),單調(diào)遞增區(qū)間為.(2)【解析】(1)先利用向量數(shù)量積運(yùn)算、二倍角公式、輔助角公式求出,再求單增區(qū)間;(2)利用面積公式求出,再利用余弦定理求出,即可求出周長(zhǎng).小問(wèn)1詳解】已知,,函數(shù),所以.因?yàn)橹本€(xiàn)是函數(shù)圖象的一條對(duì)稱(chēng)軸,所以,所以,又,所以當(dāng)k=0時(shí),符合題意,此時(shí)要求的單調(diào)遞增區(qū)間,只需,解得:,所以的單調(diào)遞增區(qū)間為.【小問(wèn)2詳解】由于,所以,所以.因?yàn)?,所?因?yàn)榈拿娣e為,所以,即,解得:.又,由余弦定理可得:,即,所以,所以,所以的周長(zhǎng).22、(1)證明見(jiàn)解析(2)(3)【解析】(1)以為原點(diǎn),所在的直線(xiàn)為軸的正方向建立空間直角坐標(biāo)系,求出平面的一個(gè)法向

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論