2025屆浙江省十校聯(lián)盟高一數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁
2025屆浙江省十校聯(lián)盟高一數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁
2025屆浙江省十校聯(lián)盟高一數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁
2025屆浙江省十校聯(lián)盟高一數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁
2025屆浙江省十校聯(lián)盟高一數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆浙江省十校聯(lián)盟高一數(shù)學(xué)第一學(xué)期期末監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)向量不共線,向量與共線,則實數(shù)()A. B.C.1 D.22.計算的值為A. B.C. D.3.已知函數(shù),,其中,若,,使得成立,則()A. B.C. D.4.已知正方形的邊長為4,動點從點開始沿折線向點運動,設(shè)點運動的路程為,的面積為,則函數(shù)的圖像是()A. B.C. D.5.已知函數(shù),且f(5a﹣2)>﹣f(a﹣2),則a的取值范圍是()A.(0,+∞) B.(﹣∞,0)C. D.6.若,則的最小值為()A.4 B.3C.2 D.17.在中,,BC邊上的高等于,則()A. B.C. D.8.已知函數(shù)是R上的單調(diào)函數(shù),則實數(shù)a的取值范圍是()A. B.C. D.9.已知點落在角的終邊上,且∈[0,2π),則的值為()A B.C. D.10.已知冪函數(shù)過點則A.,且在上單調(diào)遞減B.,且在單調(diào)遞增C.且在上單調(diào)遞減D.,且在上單調(diào)遞增二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)向量,,則__________12.若一個集合是另一個集合的子集,則稱兩個集合構(gòu)成“鯨吞”;對于集合,,若這兩個集合構(gòu)成“鯨吞”,則的取值為____________13.設(shè)函數(shù),若關(guān)于的不等式的解集為,則__________14.在中,已知是上的點,且,設(shè),,則=________.(用,表示)15.已知函數(shù),的部分圖象如圖所示,其中點A,B分別是函數(shù)的圖象的一個零點和一個最低點,且點A的橫坐標(biāo)為,,則的值為________.16.將函數(shù)的圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變,再將圖象向右平移個單位后,所得圖象關(guān)于原點對稱,則的值為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量,,,求:(1),;(2)18.已知函數(shù)=的部分圖象如圖所示(1)求的值;(2)求的單調(diào)增區(qū)間;(3)求在區(qū)間上的最大值和最小值19.設(shè)全集,集合,(1)當(dāng)時,求;(2)若,求實數(shù)的取值范圍20.已知圓的圓心坐標(biāo)為,直線被圓截得的弦長為.(1)求圓的方程;(2)求經(jīng)過點且與圓C相切的直線方程.21.若函數(shù)f(x)滿足f(logax)=·(x-)(其中a>0且a≠1).(1)求函數(shù)f(x)解析式,并判斷其奇偶性和單調(diào)性;(2)當(dāng)x∈(-∞,2)時,f(x)-4的值恒為負(fù)數(shù),求a的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由向量共線定理求解【詳解】因為向量與共線,所以存在實數(shù),使得,又向量不共線,所以,解得故選:A2、D【解析】直接由二倍角的余弦公式,即可得解.【詳解】由二倍角公式得:,故選D.【點睛】本題考查了二倍角的余弦公式,屬于基礎(chǔ)題.3、B【解析】首先已知等式變形為,構(gòu)造兩個函數(shù),,問題可轉(zhuǎn)化為這兩個函數(shù)的值域之間的包含關(guān)系【詳解】∵,,∴,又,∴,∴由得,,設(shè),,則,,,∴的值域是值域的子集∵,時,,顯然,(否則0屬于的值域,但)∴,∴(*)由上討論知同號,時,(*)式可化為,∴,,當(dāng)時,(*)式可化為,∴,無解綜上:故選:B【點睛】本題考查函數(shù)恒成立問題,解題關(guān)鍵是掌握轉(zhuǎn)化與化歸思想.首先是分離兩個變量,然后構(gòu)造新函數(shù),問題轉(zhuǎn)化為兩個函數(shù)值域之間的包含關(guān)系.其次通過已知關(guān)系確定函數(shù)值域的形式(或者參數(shù)的一個范圍),在這個范圍解不等式才能非常簡單地求解4、D【解析】當(dāng)在點的位置時,面積為,故排除選項.當(dāng)在上運動時,面積為,軌跡為直線,故選選項.5、D【解析】由定義可求函數(shù)的奇偶性,進(jìn)而將所求不等式轉(zhuǎn)化為f(5a﹣2)>f(﹣a+2),結(jié)合函數(shù)的單調(diào)性可得關(guān)于a的不等式,從而可求出a的取值范圍.【詳解】解:根據(jù)題意,函數(shù),其定義域為R,又由f(﹣x)f(x),f(x)為奇函數(shù),又,函數(shù)y=9x+1為增函數(shù),則f(x)在R上單調(diào)遞增;f(5a﹣2)>﹣f(a﹣2)?f(5a﹣2)>f(﹣a+2)?5a﹣2>﹣a+2,解可得,故選:D.【點睛】關(guān)鍵點睛:本題的關(guān)鍵是由奇偶性轉(zhuǎn)化已知不等式,再求出函數(shù)單調(diào)性求出關(guān)于a的不等式.6、D【解析】利用“乘1法”即得.【詳解】因為,所以,∴,當(dāng)且僅當(dāng)時,即時取等號,所以的最小值為1.故選:D.7、C【解析】設(shè),故選C.考點:解三角形.8、B【解析】可知分段函數(shù)在R上單調(diào)遞增,只需要每段函數(shù)單調(diào)遞增且在臨界點處的函數(shù)值左邊小于等于右邊,列出不等式即可【詳解】可知函數(shù)在R上單調(diào)遞增,所以;對稱軸,即;臨界點處,即;綜上所述:故選:B9、D【解析】由點的坐標(biāo)可知是第四象限的角,再由可得的值【詳解】由知角是第四象限的角,∵,θ∈[0,2π),∴.故選:D【點睛】此題考查同角三角函數(shù)的關(guān)系,考查三角函數(shù)的定義,屬于基礎(chǔ)題10、A【解析】由冪函數(shù)過點,求出,從而,在上單調(diào)遞減【詳解】冪函數(shù)過點,,解得,,在上單調(diào)遞減故選A.【點睛】本題考查冪函數(shù)解析式的求法,并判斷其單調(diào)性,考查冪函數(shù)的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】,故,故填.12、0【解析】根據(jù)題中定義,結(jié)合子集的定義進(jìn)行求解即可.【詳解】當(dāng)時,,顯然,符合題意;當(dāng)時,顯然集合中元素是兩個互為相反數(shù)的實數(shù),而集合中的兩個元素不互為相反數(shù),所以集合、之間不存在子集關(guān)系,不符合題意,故答案為:13、【解析】根據(jù)不等式的解集可得、、為對應(yīng)方程的根,分析兩個不等式對應(yīng)方程的根,即可得解.【詳解】由于滿足,即,可得,所以,,所以,方程的兩根分別為、,而可化為,即,所以,方程的兩根分別為、,,且不等式解集為,所以,,解得,則,因此,.故答案為:.【點睛】關(guān)鍵點點睛:本題主要考查一元二次不等式與方程之間的關(guān)系,即不等式解集的端點即為對應(yīng)方程的根,本題在理解、、分別為方程、的根,而兩方程含有公共根,進(jìn)而可得出關(guān)于實數(shù)的等式,即可求解.14、+##【解析】根據(jù)平面向量的線性運算可得答案.【詳解】因為,所以,所以可解得故答案為:15、##【解析】利用條件可得,進(jìn)而利用正弦函數(shù)的圖象的性質(zhì)可得,再利用正弦函數(shù)的性質(zhì)即求.【詳解】由題知,設(shè),則,∴,∴,∴,將點代入,解得,又,∴.故答案為:.16、【解析】將函數(shù)的圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變得到,再將圖象向右平移個單位,得到,即,其圖象關(guān)于原點對稱.∴,,又∴故答案為三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)利用向量的坐標(biāo)運算即得;(2)利用向量模長的坐標(biāo)公式即求.【小問1詳解】∵向量,,,所以,.【小問2詳解】∵,,∴,所以18、(1);(2)單調(diào)遞增區(qū)間為(3)時,取得最大值1;時,f(x)取得最小值【解析】(1)利用圖象的最高點和最低點的縱坐標(biāo)確定振幅,由相鄰對稱軸間的距離確定函數(shù)的周期和值;(2)利用正弦函數(shù)的單調(diào)性和整體思想進(jìn)行求解;(3)利用三角函數(shù)的單調(diào)性和最值進(jìn)行求解試題解析:(1)由圖象知由圖象得函數(shù)最小正周期為=,則由=得(2)令..所以f(x)的單調(diào)遞增區(qū)間為(3)..當(dāng)即時,取得最大值1;當(dāng)即時,f(x)取得最小值19、(1)或;(2)【解析】(1)由得到,然后利用集合的補(bǔ)集和交集運算求解.(2)化簡集合,根據(jù),分和兩種情況求解.【詳解】(1)當(dāng)時,或,或.(2),若,則當(dāng)時,,不成立,解得,的取值范圍是.20、(1);(2)和.【解析】(1)根據(jù)圓心坐標(biāo)設(shè)圓的標(biāo)準(zhǔn)方程,結(jié)合點到直線的距離公式求出圓的半徑即可.(2)當(dāng)切線斜率不存在時滿足題意;當(dāng)切線斜率存在時,設(shè)切線方程,結(jié)合點到直線的距離公式和圓心到直線的距離為半徑,計算求出直線斜率即可.【詳解】(1)設(shè)圓的標(biāo)準(zhǔn)方程為:圓心到直線的距離:,則圓的標(biāo)準(zhǔn)方程:(2)①當(dāng)切線斜率不存在時,設(shè)切線:,此時滿足直線與圓相切.②當(dāng)切線斜率存在時,設(shè)切線:,即則圓心到直線的距離:.解得:,即則切線方程為:綜上,切線方程為:和21、(1)見解析.(2)[2-,1)∪(1,2+]【解析】試題分析:(1)利用換元法求函數(shù)解析式,注意換元時元的范圍,再根據(jù)奇偶性定義判斷函數(shù)奇偶性,最后根據(jù)復(fù)合函數(shù)單調(diào)性性質(zhì)判斷函數(shù)單調(diào)性(2)不等式恒成立問題一般轉(zhuǎn)化為對應(yīng)函數(shù)最值問題:即f(x)最大值小于4,根據(jù)函數(shù)單調(diào)性確定函數(shù)最大值,自在解不等式可得a的取值范圍試題解析:(1)令logax=t(t∈R),則x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)為奇函數(shù)當(dāng)a>1時,y=ax為增函數(shù),y=-a-x為增函數(shù),且>0,∴f(x)為增函數(shù)當(dāng)0<a<1時,y=ax為減函數(shù),y=-a-x為減函數(shù),且<0,∴f(x)為增函數(shù).∴f(x)在R上為增函數(shù)(2)∵f(x)是R上的增函數(shù),∴y=f(x)-4也是R上的增函數(shù)由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論