黑龍江齊齊哈爾市2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁
黑龍江齊齊哈爾市2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁
黑龍江齊齊哈爾市2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁
黑龍江齊齊哈爾市2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁
黑龍江齊齊哈爾市2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

黑龍江齊齊哈爾市2025屆高二上數(shù)學(xué)期末調(diào)研模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在棱長為1的正方體中,P、Q、R分別是棱AB、BC、的中點,以PQR為底面作一個直三棱柱,使其另一個底面的三個頂點也都在正方體的表面上,則這個直三棱柱的體積為()A. B.C. D.2.設(shè),,,則a,b,c的大小關(guān)系為()A. B.C. D.3.已知數(shù)列的前n項和為,則“數(shù)列是等比數(shù)列”為“存在,使得”的()A.既不充分也不必要條件 B.必要不充分條件C.充要條件 D.充分不必要條件4.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進(jìn)微積分概念.在研究切線時認(rèn)識到,求曲線的切線的斜率依賴于縱坐標(biāo)的差值和橫坐標(biāo)的差值,以及當(dāng)此差值變成無限小時它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)的導(dǎo)函數(shù),若,且對,,且總有,則下列選項正確的是()A. B.C. D.5.直線過雙曲線:的右焦點,在第一、第四象限交雙曲線兩條漸近線分別于P,Q兩點,若∠OPQ=90°(O為坐標(biāo)原點),則OPQ內(nèi)切圓的半徑為()A. B.C.1 D.6.過,兩點的直線的一個方向向量為,則()A.2 B.2C.1 D.17.在平行六面體中,,,,則()A. B.5C. D.38.設(shè)分別是橢圓的左、右焦點,P是C上的點,則的周長為()A.13 B.16C.20 D.9.已知數(shù)列中,,當(dāng)時,,設(shè),則數(shù)列的通項公式為()A. B.C. D.10.用數(shù)學(xué)歸納法時,從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.11.已知拋物線的焦點為F,點A在拋物線上,直線FA與拋物線的準(zhǔn)線交于點M,O為坐標(biāo)原點.若,且,則()A.1 B.2C.3 D.412.如圖,奧運五環(huán)由5個奧林匹克環(huán)套接組成,環(huán)從左到右互相套接,上面是藍(lán)、黑、紅環(huán),下面是黃,綠環(huán),整個造形為一個底部小的規(guī)則梯形.為迎接北京冬奧會召開,某機構(gòu)定制一批奧運五環(huán)旗,已知該五環(huán)旗的5個奧林匹克環(huán)的內(nèi)圈半徑為1,外圈半徑為1.2,相鄰圓環(huán)圓心水平距離為2.6,兩排圓環(huán)圓心垂直距離為1.1,則相鄰兩個相交的圓的圓心之間的距離為()A. B.2.8C. D.2.9二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),___________.14.二進(jìn)制數(shù)轉(zhuǎn)化成十進(jìn)制數(shù)為______.15.已知直線和直線垂直,則實數(shù)___________.16.已知圓,過點作圓O的切線,則切線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,,.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.18.(12分)已知等差數(shù)列中,,前5項的和為,數(shù)列滿足,(1)求數(shù)列,的通項公式;(2)記,求數(shù)列的前n項和19.(12分)在平面直角坐標(biāo)系中,設(shè)點,直線,點P在直線l上移動,R是線段PF與y軸的交點,也是PF的中點.,(1)求動點Q的軌跡的方程E;(2)過點F作兩條互相垂直的曲線E的弦AB、CD,設(shè)AB、CD的中點分別為M,N.求直線MN過定點R的坐標(biāo)20.(12分)已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù))(1)求的值;(2)是否存在常數(shù),使得對于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請說明理由21.(12分)已知命題p:實數(shù)x滿足(其中);命題q:實數(shù)x滿足(1)若,為真命題,求實數(shù)x的取值范圍;(2)若p是q的充分條件,求實數(shù)的取值范圍22.(10分)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,滿足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大小;(2)若cosA=,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分別取的中點,連接,利用棱柱的定義證明幾何體是三棱柱,再證明平面PQR,得到三棱柱是直三棱柱求解.【詳解】如圖所示:連接,分別取其中點,連接,則,且,所以幾何體是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因為正方體的棱長為1,所以,所以直三棱柱的體積為,故選:C2、A【解析】構(gòu)造函數(shù),求導(dǎo)判斷其單調(diào)性即可【詳解】令,,令得,,當(dāng)時,,單調(diào)遞增,,,,,,,故選:A3、D【解析】由充分必要條件的定義,結(jié)合等比數(shù)列的通項公式和求和公式,以及利用特殊數(shù)列的分法,即可求解.【詳解】由題意,數(shù)列是等比數(shù)列,設(shè)等比數(shù)列的公比為,則,所以存在,使得,即充分性成立;若存在,使得,可取,即,可得,當(dāng),可得,此時數(shù)列不是等比數(shù)列,即必要性不成立,所以數(shù)列是等比數(shù)列為存在,使得的充分不必要條件.故選:D.4、D【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進(jìn)而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以D正確,C不正確.故選:D.【點睛】本題考查以數(shù)學(xué)文化為背景,導(dǎo)數(shù)的幾何意義,根據(jù)函數(shù)的單調(diào)性比較函數(shù)值的大小,屬于中檔題型.5、B【解析】根據(jù)漸近線的對稱性,結(jié)合銳角三角函數(shù)定義、正切的二倍角公式、直角三角形內(nèi)切圓半徑公式進(jìn)行求解即可.【詳解】由雙曲線標(biāo)準(zhǔn)方程可知:,雙曲線的漸近線方程為:,因此,因為∠OPQ=90°,所以三角形是直角三角形,,而,解得:,由雙曲線漸近線的對稱性可知:,于是有,在直角三角形中,,由勾股定理可知:,設(shè)OPQ內(nèi)切圓的半徑為,于是有:,即,故選:B【點睛】關(guān)鍵點睛:利用三角形內(nèi)切圓的性質(zhì)是解題的關(guān)鍵.6、C【解析】應(yīng)用向量的坐標(biāo)表示求的坐標(biāo),由且列方程求y值.【詳解】由題設(shè),,則且,所以,即,可得.故選:C7、B【解析】由,則結(jié)合已知條件及模長公式即可求解.【詳解】解:,所以,所以,故選:B.8、B【解析】利用橢圓的定義及即可得到答案.【詳解】由橢圓的定義,,焦距,所以的周長為.故選:B9、A【解析】根據(jù)遞推關(guān)系式得到,進(jìn)而利用累加法可求得結(jié)果【詳解】數(shù)列中,,當(dāng)時,,,,,且,,故選:A10、C【解析】分別求出n=k時左端的表達(dá)式,和n=k+1時左端的表達(dá)式,比較可得“n從k到k+1”左端需增乘的代數(shù)式【詳解】當(dāng)n=k時,左端=(k+1)(k+2)(k+3)…(2k),當(dāng)n=k+1時,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C【點睛】本題考查用數(shù)學(xué)歸納法證明等式,分別求出n=k時左端的表達(dá)式和n=k+1時左端的表達(dá)式,是解題的關(guān)鍵11、D【解析】設(shè),由和在拋物線上,求出和,利用求出p.【詳解】過A作AP垂直x軸與P.拋物線的焦點為,準(zhǔn)線方程為.設(shè),因為,所以,解得:.因為在拋物線上,則.所以,即,解得:.故選:D12、C【解析】根據(jù)題意作出輔助線直接求解即可.【詳解】如圖所示,由題意可知,在中,取的中點,連接,所以,,又因為,所以,所以即相鄰兩個相交的圓的圓心之間的距離為.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直接利用分段函數(shù)的解析式即可求解.【詳解】因為,所以,所以.故答案為:-114、13【解析】根據(jù)二進(jìn)制數(shù)和十進(jìn)制數(shù)之間的轉(zhuǎn)換方法即可求解.【詳解】.故答案為:13.15、【解析】根據(jù)兩條直線相互垂直的條件列方程,解方程求得m的值.【詳解】由于兩條直線垂直,故,解得.故答案為:.16、或【解析】首先判斷點圓位置關(guān)系,再設(shè)切線方程并聯(lián)立圓的方程,根據(jù)所得方程求參數(shù)k,即可寫出切線方程.【詳解】由題設(shè),,故在圓外,根據(jù)圓及,知:過作圓O的切線斜率一定存在,∴可設(shè)切線為,聯(lián)立圓的方程,整理得,∴,解得或.∴切線方程為或.故答案為:或.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)【解析】(1)由,取倒數(shù)得到,再利用等差數(shù)列的定義求解;(2)由(1)得到,利用錯位相減法求解.【小問1詳解】證明:由,以及,顯然,所以,即,所以數(shù)列是首項為,公差為的等差數(shù)列,所以,所以;【小問2詳解】由(1)可得,,所以數(shù)列的前項和①所以②則由②-①可得:,所以數(shù)列的前項和.18、(1),;(2).【解析】(1)利用等差數(shù)列求和公式可得,進(jìn)而可得,再利用累加法可求,即得;(2)由題可得,然后利用分組求和法即得.【小問1詳解】設(shè)公差為d,由題設(shè)可得,解得,所以;當(dāng)時,,∴,當(dāng)時,(滿足上述的),所以【小問2詳解】∵當(dāng)時,當(dāng)時,綜上所述:19、(1)(2)【解析】(1)由圖中的幾何關(guān)系可知,故可知動點Q的軌跡E是以F為焦點,l為準(zhǔn)線的拋物線,但不能和原點重合,即可直接寫出拋物線的方程;(2)設(shè)出直線AB的方程,把點、的坐標(biāo)代入拋物線方程,兩式作差后,再利用中點坐標(biāo)公式求出點M的坐標(biāo),同理求出點的坐標(biāo),即可求出直線MN的方程,最后可求出直線MN過哪一定點.【小問1詳解】∵直線的方程為,點R是線段FP的中點且,∴RQ是線段FP的垂直平分線,∵,∴是點Q到直線l的距離,∵點Q在線段FP的垂直平分線,∴,則動點Q的軌跡E是以F為焦點,l為準(zhǔn)線的拋物線,但不能和原點重合,即動點Q軌跡的方程為.【小問2詳解】設(shè),,由題意直線AB斜率存在且不為0,設(shè)直線AB的方程為,由已知得,兩式作差可得,即,則,代入可得,即點M的坐標(biāo)為,同理設(shè),,直線的方程為,由已知得,兩式作差可得,即,則,代入可得,即點的坐標(biāo)為,則直線MN的斜率為,即方程為,整理得,故直線MN恒過定點.20、(1)2;(2)存在,.【解析】(1)對函數(shù)求導(dǎo),利用得的值;(2)討論和分離參數(shù),構(gòu)造新函數(shù)求解最值即可求解【詳解】解:(1),又由題意有(2)由(1)知,此時,由或,所以函數(shù)的單調(diào)減區(qū)間為和要恒成立,即①當(dāng)時,,則要恒成立,令,再令,所以在內(nèi)遞減,所以當(dāng)時,,故,所以在內(nèi)遞增,;②當(dāng)時,lnx>0,則要恒成立,由①可知,當(dāng)時,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論