版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
棗莊市薛城區(qū)2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在直三棱柱中,,,則直線與所成角的大小為()A.30° B.60°C.120° D.150°2.直線分別與軸,軸交于A,B兩點(diǎn),點(diǎn)在圓上,則面積的取值范圍是()A B.C. D.3.已知長方體中,,,則平面與平面所成的銳二面角的余弦值為()A. B.C. D.4.已知直線交圓于A,B兩點(diǎn),若點(diǎn)滿足,則直線l被圓C截得線段的長是()A.3 B.2C. D.45.已知向量,則下列結(jié)論正確的是()A.B.C.D.6.曲線上存在兩點(diǎn)A,B到直線到距離等于到的距離,則()A.12 B.13C.14 D.157.集合,則集合A的子集個(gè)數(shù)為()A.2個(gè) B.4個(gè)C.8個(gè) D.16個(gè)8.已知雙曲線的右焦點(diǎn)為F,關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn)A、B分別在雙曲線的左、右兩支上,,且點(diǎn)C在雙曲線上,則雙曲線的離心率為()A.2 B.C. D.9.已知直線和平面,且在上,不在上,則下列判斷錯(cuò)誤的是()A.若,則存在無數(shù)條直線,使得B.若,則存在無數(shù)條直線,使得C.若存在無數(shù)條直線,使得,則D.若存在無數(shù)條直線,使得,則10.下列說法:①將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變;②從統(tǒng)計(jì)量中得知有的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有的可能性使得推斷出現(xiàn)錯(cuò)誤;③回歸直線就是散點(diǎn)圖中經(jīng)過樣本數(shù)據(jù)點(diǎn)最多的那條直線;④如果兩個(gè)變量的線性相關(guān)程度越高,則線性相關(guān)系數(shù)就越接近于;其中錯(cuò)誤說法的個(gè)數(shù)是()A. B.C. D.11.已知直線,若圓C的圓心在軸上,且圓C與直線都相切,求圓C的半徑()A. B.C.或 D.12.如圖,有一個(gè)水平放置的透明無蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時(shí)測得水深為6cm,如果不計(jì)容器的厚度,則球的體積為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)F是拋物線的焦點(diǎn),點(diǎn),點(diǎn)P為拋物線上的任意一點(diǎn),則的最小值為_________.14.如圖所示,直線是曲線在點(diǎn)處的切線,則__________.15.過橢圓上一點(diǎn)作軸的垂線,垂足為,則線段中點(diǎn)的軌跡方程為___________.16.一支車隊(duì)有10輛車,某天下午依次出發(fā)執(zhí)行運(yùn)輸任務(wù).第一輛車于14時(shí)出發(fā),以后每間隔10分鐘發(fā)出一輛車.假設(shè)所有的司機(jī)都連續(xù)開車,并都在18時(shí)停下來休息.截止到18時(shí),最后一輛車行駛了____小時(shí),如果每輛車行駛的速度都是60km/h,這個(gè)車隊(duì)各輛車行駛路程之和為______千米三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的各項(xiàng)均為正數(shù),,為自然對(duì)數(shù)的底數(shù)(1)求函數(shù)的單調(diào)區(qū)間,并比較與的大小;(2)計(jì)算,,,由此推測計(jì)算的公式,并給出證明;18.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)設(shè)為的導(dǎo)數(shù),若方程的兩根為,且,當(dāng)時(shí),不等式對(duì)任意的恒成立,求正實(shí)數(shù)的最小值.19.(12分)已知函數(shù)(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明20.(12分)國家助學(xué)貸款由國家指定的商業(yè)銀行面向在校全日制高等學(xué)校經(jīng)濟(jì)困難學(xué)生發(fā)放.用于幫助他們支付在校期間的學(xué)習(xí)和日常生活費(fèi).從年秋季學(xué)期起,全日制普通本??茖W(xué)生每人每年申請(qǐng)貸款額度由不超過元提高至不超過元,助學(xué)貸款償還本金的寬限期從年延長到年.假如學(xué)生甲在本科期間共申請(qǐng)到元的助學(xué)貸款,并承諾在畢業(yè)后年內(nèi)還清,已知該學(xué)生畢業(yè)后立即參加工作,第一年的月工資為元,第個(gè)月開始,每個(gè)月工資比前一個(gè)月增加直到元,此后工資不再浮動(dòng).(1)學(xué)生甲參加工作后第幾個(gè)月的月工資達(dá)到元;(2)如果學(xué)生甲從參加工作后的第一個(gè)月開始,每個(gè)月除了償還應(yīng)有的利息外,助學(xué)貸款的本金按如下規(guī)則償還:前個(gè)月每個(gè)月償還本金元,第個(gè)月開始到第個(gè)月每個(gè)月償還的本金比前一個(gè)月多元,第個(gè)月償還剩余的本金.則他第個(gè)月的工資是否足夠償還剩余的本金.(參考數(shù)據(jù):;;)21.(12分)如圖,在直三棱柱中,,,,分別為,,的中點(diǎn),點(diǎn)在棱上,且,,.(1)求證:平面;(2)求證:平面平面;(3)求平面與平面的距離.22.(10分)已知數(shù)列與滿足(1)若,且,求數(shù)列的通項(xiàng)公式;(2)設(shè)的第k項(xiàng)是數(shù)列的最小項(xiàng),即恒成立.求證:的第k項(xiàng)是數(shù)列的最小項(xiàng);(3)設(shè).若存在最大值M與最小值m,且,試求實(shí)數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)三棱柱的特征補(bǔ)全為正方體,則,為直線與所成角,連接,則為等邊三角形即可得解.【詳解】根據(jù)直三棱柱的特征,補(bǔ)全可得如圖所示的正方體,易知,為直線與所成角,連接,則為等邊三角形,所以,所以直線與所成角的大小為.故選:B2、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點(diǎn)到直線的距離.【詳解】與x,y軸的交點(diǎn),分別為,,點(diǎn)在圓,即上,所以,圓心到直線距離為,所以面積的最小值為,最大值為.故選:A3、A【解析】建立空間直角坐標(biāo)系,求得平面的一個(gè)法向量為,易知平面的一個(gè)法向量為,由求解.【詳解】建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面的一個(gè)法向量為,則,即,令,則,易知平面的一個(gè)法向量為,所以,所以平面與平面所成的銳二面角的余弦值為,故選:A4、B【解析】由題設(shè)知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進(jìn)而判斷△的形狀,即可得直線l被圓C截得線段的長.【詳解】∵點(diǎn)為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長是2故選:B5、D【解析】由題可知:,,,故選;D6、D【解析】由題可知A,B為半圓C與拋物線的交點(diǎn),利用韋達(dá)定理及拋物線的定義即求.【詳解】由曲線,可得,即,為圓心為,半徑為7半圓,又直線為拋物線的準(zhǔn)線,點(diǎn)為拋物線的焦點(diǎn),依題意可知A,B為半圓C與拋物線的交點(diǎn),由,得,設(shè),則,,∴.故選:D.7、C【解析】取,再根據(jù)的周期為4,可得,即可得解.【詳解】因?yàn)?,所?時(shí),,時(shí),,時(shí),,時(shí),,所以集合,所以的子集的個(gè)數(shù)為,故選:C.8、D【解析】設(shè),由,得到四邊形是矩形,在中,利用勾股定理求得,再在中,利用勾股定理求解.【詳解】如圖所示:設(shè),則,,,因?yàn)?,所以,則四邊形是矩形,在中,,即,解得,在中,,即,解得,故選:D9、D【解析】根據(jù)直線和直線,直線和平面的位置關(guān)系依次判斷每一個(gè)選項(xiàng)得到答案.【詳解】若,則平行于過的平面與的交線,當(dāng)時(shí),,則存在無數(shù)條直線,使得,A正確;若,垂直于平面中的所有直線,則存在無數(shù)條直線,使得,B正確;若存在無數(shù)條直線,使得,,,則,C正確;當(dāng)時(shí),存在無數(shù)條直線,使得,D錯(cuò)誤.故選:D.10、C【解析】根據(jù)統(tǒng)計(jì)的概念逐一判斷即可.【詳解】對(duì)于①,方差反映一組數(shù)據(jù)的波動(dòng)大小,將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變,①正確;對(duì)于②從統(tǒng)計(jì)量中得知有的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有的可能性使得推斷出現(xiàn)錯(cuò)誤;故②正確;對(duì)于③,線性回歸方程必過樣本中心點(diǎn),回歸直線不一定就是散點(diǎn)圖中經(jīng)過樣本數(shù)據(jù)點(diǎn)最多的那條直線,也可能不過任何一個(gè)點(diǎn);③不正確;對(duì)于④,如果兩個(gè)變量的線性相關(guān)程度越高,則線性相關(guān)系數(shù)就越接近于,不正確,應(yīng)為相關(guān)系數(shù)的絕對(duì)值就越接近于;綜上,其中錯(cuò)誤的個(gè)數(shù)是;故選:C.11、C【解析】設(shè)出圓心坐標(biāo),利用圓心到直線的距離相等列方程,求得圓心坐標(biāo)并求得圓的半徑.【詳解】設(shè)圓心坐標(biāo)為,則或,所以圓的半徑為或.故選:C12、A【解析】根據(jù)題意可求出正方體的上底面與球相交所得截面圓的半徑為4cm,再根據(jù)截面圓半徑,球的半徑以及球心距的關(guān)系,即可求出球的半徑,從而得到球的體積【詳解】設(shè)球的半徑為cm,根據(jù)已知條件知,正方體的上底面與球相交所得截面圓的半徑為4cm,球心到截面圓的距離為cm,所以由,得,所以球的體積為故選:A【點(diǎn)睛】本題主要考查球的體積公式的應(yīng)用,以及球的結(jié)構(gòu)特征的應(yīng)用,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)拋物線的定義可求最小值.【詳解】如圖,過作拋物線準(zhǔn)線的垂線,垂足為,連接,則,當(dāng)且僅當(dāng)共線時(shí)等號(hào)成立,故的最小值為3,故答案為:3.14、##【解析】利用直線所過點(diǎn)求得直線的斜率,從而求得.【詳解】由圖象可知直線過,所以直線的斜率為,所以.故答案為:15、【解析】相關(guān)點(diǎn)法求解軌跡方程.【詳解】設(shè),則,則,即,因?yàn)?,代入可得,即的軌跡方程為.故答案為:16、①.2.5####②.1950【解析】通過分析,求出最后一輛車的出發(fā)時(shí)間,從而求出最后一輛車的行駛時(shí)間,這10輛車的行駛路程可以看作等差數(shù)列,利用等差數(shù)列求和公式進(jìn)行求解.【詳解】因?yàn)椋宰詈笠惠v車出發(fā)時(shí)間為15時(shí)30分,則最后一輛車行駛時(shí)間為18-15.5=2.5小時(shí),第一輛車行程為km,且從第二輛車開始,每輛車都比前一輛少走km,這10輛車的行駛路程可以看作首項(xiàng)為240,公差為-10的等差數(shù)列,則10輛車的行程路程之和為(km).故答案為:2.5,1950三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)詳見解析【解析】(1)求出的定義域,利用導(dǎo)數(shù)求其最大值,得到,取即可得出答案.(2)由,變形求得,,,由此推測:然后用數(shù)學(xué)歸納法證明即可.【小問1詳解】的定義域?yàn)椋?dāng),即時(shí),單調(diào)遞增;當(dāng),即時(shí),單調(diào)遞減故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當(dāng)時(shí),,即令,得,即【小問2詳解】;;由此推測:①下面用數(shù)學(xué)歸納法證明①(1)當(dāng)時(shí),左邊右邊,①成立(2)假設(shè)當(dāng)時(shí),①成立,即當(dāng)時(shí),,由歸納假設(shè)可得所以當(dāng)時(shí),①也成立根據(jù)(1)(2),可知①對(duì)一切正整數(shù)都成立18、(1)(2)1【解析】(1)先求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義可求得切線方程;(2)將已知方程結(jié)合其兩根,進(jìn)行變式,求得,利用該式再將不等式變形,然后將不等式的恒成立問題變?yōu)楹瘮?shù)的最值問題求解.【小問1詳解】由題意可得,所以切點(diǎn)為,則切線方程為:.【小問2詳解】由題意有:,則,因?yàn)榉謩e是方程的兩個(gè)根,即.兩式相減,則,則不等式,可變?yōu)?,兩邊同時(shí)除以得,,令,則在上恒成立.整理可得,在上恒成立,令,則,①當(dāng),即時(shí),在上恒成立,則在上單調(diào)遞增,又,則在上恒成立;②當(dāng),即時(shí),當(dāng)時(shí),,則在上單調(diào)遞減,則,不符合題意.綜上:,所以的最小值為1.19、(1)答案見解析(2)證明見解析【解析】(1)求導(dǎo)得,進(jìn)而分和兩種情況討論求解即可;(2)根據(jù)題意證明,進(jìn)而令,再結(jié)合(1)得,研究函數(shù)的性質(zhì)得,進(jìn)而得時(shí),,即不等式成立.【小問1詳解】解:函數(shù)的定義域?yàn)?,,∴?dāng)時(shí),在上恒成立,故函數(shù)在區(qū)間上單調(diào)遞增;當(dāng)時(shí),由得,由得,即函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;綜上,當(dāng)時(shí),在區(qū)間上單調(diào)遞增;當(dāng)時(shí),在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】證明:因?yàn)闀r(shí),證明,只需證明,由(1)知,當(dāng)時(shí),函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減;所以.令,則,所以當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增,所以.所以時(shí),,所以當(dāng)時(shí),20、(1);(2)不能,理由見解析.【解析】(1)設(shè)甲參加工作后第個(gè)月的月工資達(dá)到元,根據(jù)已知條件可得出關(guān)于的不等式,結(jié)合參考數(shù)據(jù)可求得結(jié)果;(2)分析可知從第個(gè)月開始到第個(gè)月償還的本金是首項(xiàng)為為首項(xiàng),以為公差的等差數(shù)列,計(jì)算出甲前個(gè)月償還的本金,再由甲第個(gè)月的工資可得出結(jié)論.【小問1詳解】解:設(shè)甲參加工作后第個(gè)月的月工資達(dá)到元,則,可得,,解得,所以,學(xué)生甲參加工作后第個(gè)月的月工資達(dá)到元.【小問2詳解】解:因?yàn)榧浊皞€(gè)月每個(gè)月償還本金元,第個(gè)月開始到第個(gè)月每個(gè)月償還的本金比前一個(gè)月多元,所以,從第個(gè)月開始到第個(gè)月償還的本金是首項(xiàng)為為首項(xiàng),以為公差的等差數(shù)列,所以,前個(gè)月償還的本金為,因?yàn)榈趥€(gè)月開始,每個(gè)月工資比前一個(gè)月增加直到元,所以,第個(gè)月的工資為元,因?yàn)?,因此,甲第個(gè)月的工資不能足夠償還剩余的本金.21、(1)見解析(2)見解析(3)【解析】(1)利用勾股定理證得,證明平面,根據(jù)線面垂直的性質(zhì)證得,再根據(jù)線面垂直的判定定理即可得證;(2)取的中點(diǎn),連接,可得為的中點(diǎn),證明,四邊形是平行四邊形,可得,再根據(jù)面面平行的判定定理即可得證;(3)設(shè),由(1)(2)可得即為平面與平面的距離,求出的長度,即可得解.【小問1詳解】證明:在直三棱柱中,為的中點(diǎn),,,故,因?yàn)?,所以,又平面,平面,所以,又因,,所以平面,又平面,所以,又,所以平面;【小?詳解】證明:取的中點(diǎn),連接,則為的中點(diǎn),因?yàn)?,,分別為,,的中點(diǎn),所以,且,所以四邊形是平行四邊形,所以,所以,又平面,平面,所以平面,因?yàn)椋?,又平面,平面,所以平面,又因,平面,平面,所以平面平面;【小?詳解】設(shè),因?yàn)槠矫妫矫嫫矫?,所以平面,所以即為平面與平面的距離,因平面,所以,,所以,即平面與平面的距離為.22、(1)(2)證明見解析.(3)【解析】(1)由已知關(guān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年大學(xué)生社會(huì)實(shí)踐總結(jié)參考(三篇)
- 2024年場地租賃合同經(jīng)典版(三篇)
- 2024年小學(xué)教師德育工作總結(jié)(三篇)
- 2024年工程施工承包合同常用版(二篇)
- 2024年小學(xué)數(shù)學(xué)教研組計(jì)劃(三篇)
- 2024年婦幼健康教育工作計(jì)劃模版(二篇)
- 2024年大學(xué)四年學(xué)習(xí)計(jì)劃范本(二篇)
- 2024年工廠臨時(shí)工勞動(dòng)合同標(biāo)準(zhǔn)范本(二篇)
- 2024年醫(yī)院財(cái)務(wù)工作計(jì)劃范本(二篇)
- 2024年安全隱患排查與整改制度模版(二篇)
- 新《固廢法》解讀(專業(yè)版)
- 領(lǐng)導(dǎo)及上下級(jí)關(guān)系處理講義
- Catia百格線生成宏
- 業(yè)務(wù)流程繪制方法IDEF和IDEFPPT課件
- 鍋爐安全基礎(chǔ)知識(shí)
- 幼兒園科學(xué)教育論文范文
- 駕校質(zhì)量信譽(yù)考核制度
- 用電檢查工作流程圖
- 電動(dòng)葫蘆的設(shè)計(jì)計(jì)算電動(dòng)起重機(jī)械畢業(yè)設(shè)計(jì)論文
- (完整版)學(xué)校安辦主任安全工作職責(zé)
- PCR儀使用手冊(cè)
評(píng)論
0/150
提交評(píng)論