吉林省吉林市蛟河市朝鮮族中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第1頁
吉林省吉林市蛟河市朝鮮族中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第2頁
吉林省吉林市蛟河市朝鮮族中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第3頁
吉林省吉林市蛟河市朝鮮族中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第4頁
吉林省吉林市蛟河市朝鮮族中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省吉林市蛟河市朝鮮族中學(xué)2025屆高二上數(shù)學(xué)期末考試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題若直線與拋物線有且僅有一個公共點,則直線與拋物線相切,命題若,則方程表示橢圓.下列命題是真命題的是A. B.C. D.2.設(shè)平面向量,,其中m,,記“”為事件A,則事件A發(fā)生的概率為()A. B.C. D.3.2021年11月,鄭州二七罷工紀念塔入選全國職工愛國主義教育基地名單.某數(shù)學(xué)建模小組為測量塔的高度,獲得了以下數(shù)據(jù):甲同學(xué)在二七廣場A地測得紀念塔頂D的仰角為45°,乙同學(xué)在二七廣場B地測得紀念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀念塔的高CD為()A.40m B.63mC.m D.m4.《九章算術(shù)》與《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》卷五商功篇中介紹了羨除(此處是指三面為等腰梯形,其他兩側(cè)面為直角三角形的五面體)體積的求法.在如圖所示的羨除中,平面是鉛垂面,下寬,上寬,深,平面BDEC是水平面,末端寬,無深,長(直線到的距離),則該羨除的體積為()A. B.C. D.5.如圖,在棱長為1的正方體中,P、Q、R分別是棱AB、BC、的中點,以PQR為底面作一個直三棱柱,使其另一個底面的三個頂點也都在正方體的表面上,則這個直三棱柱的體積為()A. B.C. D.6.下列對動直線的四種表述不正確的是()A.與曲線C:可能相離,相切,相交B.恒過定點C.時,直線斜率是0D.時,直線的傾斜角是135°7.設(shè)函數(shù)在上可導(dǎo),則等于()A. B.C. D.以上都不對8.在等差數(shù)列中,,,則使數(shù)列的前n項和成立的最大正整數(shù)n=()A.2021 B.2022C.4041 D.40429.已知函數(shù)在上可導(dǎo),且,則與的大小關(guān)系為A. B.C. D.不確定10.命題若,且,則,命題在中,若,則.下列命題中為真命題的是()A. B.C. D.11.如圖,在三棱柱中,為的中點,若,,,則下列向量與相等的是()A. B.C. D.12.如圖,和分別是雙曲線的兩個焦點,和是以為圓心,以為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的焦距為______.14.過點,的直線方程(一般式)為___________.15.直線的傾斜角為_______________.16.不大于100的正整數(shù)中,被3除余1的所有數(shù)的和是___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)橢圓的離心率為,設(shè)為坐標原點,為橢圓的左頂點,動直線過線段的中點,且與橢圓相交于、兩點.已知當直線的傾斜角為時,(1)求橢圓的標準方程;(2)是否存在定直線,使得直線、分別與相交于、兩點,且點總在以線段為直徑的圓上,若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由18.(12分)設(shè)或,(1)若時,p是q的什么條件?(2)若p是q的必要不充分條件,求a的取值范圍19.(12分)求下列不等式的解集:(1);(2).20.(12分)已知E,F(xiàn)分別是正方體的棱BC和CD的中點(1)求與所成角的大??;(2)求與平面所成角的余弦值21.(12分)已知函數(shù).(1)記函數(shù),當時,討論函數(shù)的單調(diào)性;(2)設(shè),若存在兩個不同的零點,證明:為自然對數(shù)的底數(shù)).22.(10分)已知橢圓與拋物線有一個相同的焦點,且該橢圓的離心率為,(Ⅰ)求該橢圓的標準方程:(Ⅱ)求過點的直線與該橢圓交于A,B兩點,O為坐標原點,若,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】若直線與拋物線的對稱軸平行,滿足條件,此時直線與拋物線相交,可判斷命題為假;當時,,命題為真,根據(jù)復(fù)合命題的真假關(guān)系,即可得出結(jié)論.【詳解】若直線與拋物線的對稱軸平行,直線與拋物線只有一個交點,直線與拋物不相切,可得命題是假命題,當時,,方程表示橢圓命題是真命題,則是真命題.故選:B.【點睛】本題考查復(fù)合命題真假的判斷,屬于基礎(chǔ)題.2、D【解析】由向量的數(shù)量積公式結(jié)合古典概型概率公式得出事件A發(fā)生的概率.【詳解】由題意可知,即,因為所有的基本事件共有種,其中滿足的為,,只有1種,所以事件A發(fā)生的概率為.故選:D3、B【解析】設(shè),先表示出,再利用余弦定理即可求解.【詳解】如圖所示,,設(shè)塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.4、C【解析】在,上分別取點,,使得,連接,,,把幾何體分割成一個三棱柱和一個四棱錐,然后由棱柱、棱錐體積公式計算【詳解】如圖,在,上分別取點,,使得,連接,,,則三棱柱是斜三棱柱,該羨除的體積三棱柱四棱錐.故選:C【點睛】思路點睛:本題考查求空間幾何體的體積,解題思路是觀察幾何體的結(jié)構(gòu)特征,合理分割,將不規(guī)則幾何體體積的計算轉(zhuǎn)化為錐體、柱體體積的計算.考查了空間想象能力、邏輯思維能力、運算求解能力5、C【解析】分別取的中點,連接,利用棱柱的定義證明幾何體是三棱柱,再證明平面PQR,得到三棱柱是直三棱柱求解.【詳解】如圖所示:連接,分別取其中點,連接,則,且,所以幾何體是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因為正方體的棱長為1,所以,所以直三棱柱的體積為,故選:C6、A【解析】根據(jù)過定點的直線系求出恒過點可判斷B,由點與圓的位置關(guān)系可判斷A,由直線方程可判斷CD.【詳解】直線可化為,令,,解得,,所以直線恒過定點,而該定點在圓C:內(nèi)部,所以必與該圓相交當時,直線方程為,故斜率為0,當時,直線方程為,故斜率為,傾斜角為135°.故選:A7、C【解析】根據(jù)目標式,結(jié)合導(dǎo)數(shù)的定義即可得結(jié)果.【詳解】.故選:C8、C【解析】根據(jù)等差數(shù)列的性質(zhì)易得,,再應(yīng)用等差數(shù)列前n項和公式及等差中項、下標和的性質(zhì)可得、,即可確定答案.【詳解】因為是等差數(shù)列且,,所以,,.故選:C.9、B【解析】由,所以.10、A【解析】根據(jù)不等式性質(zhì)及對數(shù)函數(shù)的單調(diào)性判斷命題的真假,根據(jù)大角對大邊及正弦定理可判斷命題的真假,再根據(jù)復(fù)合命題真假的判斷方法即可得出結(jié)論.【詳解】解:若,且,則,當時,,所以,當時,,所以,綜上命題為假命題,則為真命題,在中,若,則,由正弦定理得,所以命題為真命題,為假命題,所以為真命題,,,為假命題.故選:A.11、A【解析】利用空間向量基本定理求解即可【詳解】由于M是的中點,所以故選:A12、D【解析】解:,設(shè)F1F2=2c,∵△F2AB是等邊三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故選D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由求出即可.【詳解】可化為,設(shè)焦距為,則,則焦距故答案為:14、【解析】利用兩點式方程可求直線方程.【詳解】∵直線過點,,∴,∴,化簡得.故答案為:.15、【解析】由直線的斜率為,得到,即可求解.【詳解】由題意,可知直線的斜率為,設(shè)直線的傾斜角為,則,解得,即換線的傾斜角為.【點睛】本題主要考查直線的傾斜角的求解問題,其中解答中熟記直線的傾斜角與斜率的關(guān)系,合理準確計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.16、1717【解析】利用等差數(shù)列的前項和公式可求所有數(shù)的和.【詳解】100以內(nèi)的正整數(shù)中,被3除余1由小到大構(gòu)成等差數(shù)列,其首項為1,公差為3,共有項,它們的和為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,且直線的方程為或【解析】(1)分析可知,,直線的方程為,設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,利用弦長公式可求得的值,即可得出橢圓的標準方程;(2)設(shè)點、,設(shè)直線的方程為,將該直線方程與橢圓的方程聯(lián)立,列出韋達定理,求出點、,由已知得出,求出的值,即可得出結(jié)論.【小問1詳解】解:因為,則,,所以,橢圓的方程為,即,易知點,則點,當直線的傾斜角為時,直線的方程為,設(shè)點、,聯(lián)立,可得,,由韋達定理可得,,所以,,解得,則,,因此,橢圓的標準方程為.【小問2詳解】解:易知點,若直線與軸重合,則、為橢圓長軸的兩個端點,不合乎題意.設(shè)直線的方程為,設(shè)點、,聯(lián)立,可得,,由韋達定理可得,,直線的斜率為,直線的方程為,故點,同理可得點,,,由題意可得,解得或.因此,存在滿足題設(shè)條件的直線,且直線的方程為或,點總在以線段為直徑的圓上.【點睛】方法點睛:利用韋達定理法解決直線與圓錐曲線相交問題的基本步驟如下:(1)設(shè)直線方程,設(shè)交點坐標為、;(2)聯(lián)立直線與圓錐曲線的方程,得到關(guān)于(或)的一元二次方程,必要時計算;(3)列出韋達定理;(4)將所求問題或題中的關(guān)系轉(zhuǎn)化為、(或、)的形式;(5)代入韋達定理求解.18、(1)充要條件;(2).【解析】(1)根據(jù)解一元二次不等式的方法,結(jié)合充分性、必要性的定義進行求解判斷即可;(2)根據(jù)必要不充分條件的性質(zhì)進行求解即可.【小問1詳解】因為,所以,解得或,顯然p是q的充要條件;【小問2詳解】,當時,該不等式的解集為全體實數(shù)集,顯然由,但不成立,因此p是q的充分不必要條件,不符合題意;當時,該不等式的解集為:,顯然當時,不一定成立,因此p不是q的必要不充分條件,當時,該不等式解集為:,要想p是q的必要不充分條件,只需,而,所以,因此a的取值范圍為:.19、(1)(2)【解析】(1)根據(jù)一元二次不等式的解法求得不等式的解集.(2)根據(jù)分式不等式的解法求得不等式的解集.【小問1詳解】不等式等價于,解得.∴不等式的解集為.【小問2詳解】不等式等價于,解得或.∴不等式的解集為.20、(1)60°;(2).【解析】(1)建立空間直角坐標系,利用空間向量夾角的坐標公式即可求出異面直線所成角的余弦值,進而結(jié)合異面直線成角的范圍即可求出結(jié)果;(2)建立空間直角坐標系,利用空間向量夾角的坐標公式即可求出求出線面角的正弦值,進而結(jié)合線面角的范圍即可求出結(jié)果;【小問1詳解】以AB,AD,所在直線分別為x,y,z軸建立如圖所示的空間直角坐標系,設(shè)正方體的棱長為,則,,,,所以,,設(shè)與EF所成角的大小為,則,因為異面直線成角的范圍是,所以與所成角的大小為60°【小問2詳解】設(shè)平面的法向量為,與平面所成角為,因為,,所以,,所以,令,得為平面的一個法向量,又因為,所以,所以21、(1)在和上單調(diào)遞增;在上單調(diào)遞減(2)證明見解析【解析】(1)先求導(dǎo),然后對導(dǎo)數(shù)化簡整理后再解不等式即可得單調(diào)性;(2)要證明,通過求函數(shù)的極值可證明,要證,根據(jù)有兩個不同的零點,將問題轉(zhuǎn)化為證明成立,再通過換元從求函數(shù)的最值上證明.【小問1詳解】因為,所以,令,得或.所以時,或;時,.所以在和上單調(diào)遞增;在上單調(diào)遞減.【小問2詳解】因為,所以.當時,,可得在上單調(diào)遞減,此時不可能存在兩個不同的零點,不符合題意.當時,.令,得.當時,;當時,.所以在上單調(diào)遞增,在上單調(diào)遞減.而當時,,時,.所以要使存在兩個不同的零點,則,即,解得.因為存在兩個不同的零點,則,即.不妨設(shè),則,則,要證,即證,即證,即,.即證,令,則,所以在上單調(diào)遞增,所以,即,所以成立.綜上有.【關(guān)鍵點點睛】解決本題的第(1)問的關(guān)鍵是對導(dǎo)函數(shù)的分子因式分解;解決第(2)問的關(guān)鍵一是分步證明,二是研究函數(shù)的單調(diào)性,三是轉(zhuǎn)化思想的運用,四是換元思想的運用.22、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根據(jù)題意可以求出橢圓的焦點,再根據(jù)橢圓的離心率公式,求出的值,然后結(jié)合橢圓的關(guān)系求出,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論