![山東省夏津縣第一中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第1頁](http://file4.renrendoc.com/view14/M0B/21/18/wKhkGWclxQGAF2SZAAGfy-Yx1hk395.jpg)
![山東省夏津縣第一中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第2頁](http://file4.renrendoc.com/view14/M0B/21/18/wKhkGWclxQGAF2SZAAGfy-Yx1hk3952.jpg)
![山東省夏津縣第一中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第3頁](http://file4.renrendoc.com/view14/M0B/21/18/wKhkGWclxQGAF2SZAAGfy-Yx1hk3953.jpg)
![山東省夏津縣第一中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第4頁](http://file4.renrendoc.com/view14/M0B/21/18/wKhkGWclxQGAF2SZAAGfy-Yx1hk3954.jpg)
![山東省夏津縣第一中學(xué)2025屆高二上數(shù)學(xué)期末考試試題含解析_第5頁](http://file4.renrendoc.com/view14/M0B/21/18/wKhkGWclxQGAF2SZAAGfy-Yx1hk3955.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山東省夏津縣第一中學(xué)2025屆高二上數(shù)學(xué)期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若方程表示圓,則實數(shù)m的取值范圍為()A B.C. D.2.直線的傾斜角大小為()A. B.C. D.3.甲、乙兩名同學(xué)8次考試的成績統(tǒng)計如圖所示,記甲、乙兩人成績的平均數(shù)分別為,,標(biāo)準(zhǔn)差分別為,,則()A.>,< B.>,>C.<,< D.<,>4.定義在R上的偶函數(shù)在上單調(diào)遞增,且,則滿足的x的取值范圍是()A. B.C. D.5.設(shè)的內(nèi)角A,B,C的對邊分別為a,b,c,已知,,,則b等于()A. B.2C. D.46.直線在y軸上的截距是A. B.C. D.7.現(xiàn)有一根金錘,長5尺,頭部1尺,重4斤,尾部1尺,重2斤,若該金錘從頭到尾,每一尺的重量構(gòu)成等差數(shù)列,該金錘共重()斤A.6 B.7C.9 D.158.的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若,則()A. B.C. D.9.設(shè)集合或,,則()A. B.C. D.10.橢圓的長軸長是()A.3 B.4C.6 D.811.已知數(shù)列滿足,若.則的值是()A. B.C. D.12.已知雙曲線的右焦點為,漸近線為,,過的直線與垂直,且交于點,交于點,若,則雙曲線的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的漸近線方程是____________14.設(shè)函數(shù),則___________.15.在平行六面體中,點P是AC與BD的交點,若,且,則___________.16.若直線與直線平行,則實數(shù)m的值為____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線l經(jīng)過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0交點,且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標(biāo)準(zhǔn)方程18.(12分)已知函數(shù)f(x)=x-mlnx-m.(1)討論函數(shù)f(x)的單調(diào)性;(2)若函數(shù)f(x)有最小值g(m),證明:g(m)在上恒成立.19.(12分)已知圓,點(1)若點在圓外部,求實數(shù)的取值范圍;(2)當(dāng)時,過點的直線交圓于,兩點,求面積的最大值及此時直線l的斜率20.(12分)在△ABC中,角A,B,C所對的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀21.(12分)如圖,已知等腰梯形,,為等腰直角三角形,,把沿折起(1)當(dāng)時,求證:;(2)當(dāng)平面平面時,求平面與平面所成二面角的平面角的正弦值22.(10分)已知命題p:實數(shù)x滿足;命題q:實數(shù)x滿足.若p是q的必要條件,求實數(shù)a的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù),解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實數(shù)m的取值范圍為.故選:D2、B【解析】將直線方程變?yōu)樾苯厥?,根?jù)斜率與傾斜角關(guān)系可直接求解.【詳解】由直線可得,所以,設(shè)傾斜角為,則因為所以故選:B3、A【解析】根據(jù)折線統(tǒng)計圖,結(jié)合均值、方差的實際含義判斷、及、的大小.【詳解】由統(tǒng)計圖知:甲總成績比乙總成績要高,則>,又甲成績的分布比乙均勻,故<.故選:A.4、B【解析】,再根據(jù)函數(shù)的奇偶性和單調(diào)性可得或,解之即可得解.【詳解】解:,由題意可得或即或,解得或故選:B.5、A【解析】由正弦定理求解即可.【詳解】因為,所以故選:A6、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.7、D【解析】設(shè)該等差數(shù)列為,其公差為,根據(jù)題意和等差數(shù)列的性質(zhì)可得,進而求出結(jié)果.【詳解】設(shè)該等差數(shù)列為,其公差為,由題意知,,由,解得,所以.故選:D8、D【解析】利用正弦定理邊化角,角化邊計算即可.【詳解】由正弦定理邊化角得,,再由正弦定理角化邊得,即故選:D.9、B【解析】根據(jù)交集的概念和運算直接得出結(jié)果.【詳解】由題意知,.故選:B.10、D【解析】根據(jù)橢圓方程可得到a,從而求得長軸長.【詳解】橢圓方程為,故,所以橢圓長軸長為,故選:D.11、D【解析】由,轉(zhuǎn)化為,再由求解.【詳解】因為數(shù)列滿足,所以,即,因為,所以,所以,故選:D12、C【解析】由題設(shè)易知是的中垂線,進而可得,結(jié)合雙曲線參數(shù)關(guān)系及離心率公式求雙曲線的離心率即可.【詳解】由題意,是的中垂線,故,由對稱性得,則,故,∴.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由雙曲線的方程可知,,即可直接寫出其漸近線的方程.【詳解】由雙曲線的方程為,可知,;則雙曲線的漸近線方程為.故答案:.14、【解析】由的導(dǎo)數(shù)為,將代入,即可求出結(jié)果.【詳解】因為,所以,所以.故答案為:.15、【解析】由向量的運算法則,求得,根據(jù),結(jié)合向量的數(shù)量積的運算,即可求解.【詳解】由題意可得,,則,故.故答案為:16、【解析】利用兩條直線平行的充要條件,列式求解即可【詳解】解:因為直線與直線平行,所以,解得故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求得直線和直線的交點坐標(biāo),再用點斜式求得直線的方程.(2)設(shè)圓的標(biāo)準(zhǔn)方程為,根據(jù)已知條件列方程組,求得,由此求得圓的標(biāo)準(zhǔn)方程.【小問1詳解】.直線的斜率為,所以直線的斜率為,所以直線的方程為.【小問2詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,則,所以圓的標(biāo)準(zhǔn)方程為.18、(1)答案見解析(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),討論其符號后可得函數(shù)的單調(diào)區(qū)間.(2)根據(jù)(1)的結(jié)論可得函數(shù)的最小值,再利用導(dǎo)數(shù)可證不等式.【小問1詳解】函數(shù)的定義域為,且,當(dāng)時,在上恒成立,所以此時在上為增函數(shù),當(dāng)時,由,解得,由,解得,所以在上為減函數(shù),在上為增函數(shù),綜上:當(dāng)時,在上為增函數(shù),當(dāng)時,在上為減函數(shù),在上為增函數(shù);【小問2詳解】由(1)知:當(dāng)時,在上為增函數(shù),無最小值.當(dāng)時,在上上為減函數(shù),在上為增函數(shù),所以,即,則,由,解得,由,解得,所以在上為增函數(shù),在上為減函數(shù),所以,即在上恒成立.19、(1);(2)最大值為2,【解析】(1)根據(jù)題意,將圓的方程變形為標(biāo)準(zhǔn)方程,由點與圓的位置關(guān)系可得,求解不等式組得答案;(2)當(dāng)時,圓的方程為,求出圓心與半徑,設(shè),則,分析可得面積的最大值,結(jié)合直線與圓的位置關(guān)系可得圓心到直線的距離,設(shè)直線的方程為,即,由點到直線的距離公式列式求得的值【詳解】解:(1)根據(jù)題意,圓,即,若在圓外,則有,解得:,即的取值范圍為;(2)當(dāng)時,圓的方程為,圓心為,半徑,設(shè),則,當(dāng)時,面積取得最大值,且其最大值為2,此時為等腰直角三角形,圓心到直線的距離,設(shè)直線的方程為,即,則有,解得,即直線的斜率【點睛】易錯點點睛:本題第一問解答過程中,容易忽視二元二次方程表示圓的條件,導(dǎo)致出錯,解題的時候要考慮周全,考查運算求解能力,是中檔題.20、(1)(2)等邊三角形【解析】(1)把化為,然后由正弦定理化邊為角,利用兩角和的正弦公式、誘導(dǎo)公式可求得;(2)由余弦定理及三角形面積公式可得,從而得出三角形為等邊三角形【小問1詳解】∵,∴由正弦定理得,∵,∴,∴,又,所以,可得;【小問2詳解】由(1)知余弦定理,①,②由①②可得:,又,所以,所以該三角形為等邊三角形21、(1)證明見解析(2)【解析】(1)取的中點E,連,證明四邊形為平行四邊形,從而可得為等邊三角形,四邊形為菱形,從而可證,,即可得平面,再根據(jù)線面垂直的性質(zhì)即可得證;(2)取的中點M,連接,以B為空間坐標(biāo)原點,向量分別為x,y,z軸建立空間直角坐標(biāo)系,利用向量法即可得出答案.【小問1詳解】解:取的中點E,連,∵,∴,∵,∴四邊形為平行四邊形,∵,∴,∵,∴為等邊三角形,四邊形為菱形,∴,,∴∴,∵,,,平面,,∴平面,∵平面,∴;【小問2詳解】解:取的中點M,連接,由(1)知,,∵平面平面,,∴平面,以B為空間坐標(biāo)原點,向量分別為x,y,z軸建立空間直角坐標(biāo)系,則,設(shè)平面的法向量為,由,,有,取,可得,設(shè)平面的法向量為,由,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)生交流會策劃方案(8篇)
- 2025年材料用過濾袋合同采購流程
- 2025年醫(yī)用耗材集中采購協(xié)議
- 2025年文物遺址保護服務(wù)項目規(guī)劃申請報告
- 2025年舞蹈學(xué)校教職員工勞動合同
- 2025年貴金屬靶材項目申請報告模板
- 2025年企業(yè)互助共享協(xié)議
- 2025年單位二手商業(yè)房產(chǎn)出售合同范本
- 2025年公司員工競業(yè)限制協(xié)議范例
- 2025年組合開關(guān)項目提案報告
- GB/T 24630.2-2024產(chǎn)品幾何技術(shù)規(guī)范(GPS)平面度第2部分:規(guī)范操作集
- 鐵路運輸經(jīng)濟法規(guī)教學(xué)大綱
- 二年級上冊100以內(nèi)進位加法豎式計算題100道及答案
- 井控培訓(xùn)考試題及答案
- 幼兒園 中班心理健康《我會傾訴》
- 貴州省遵義市數(shù)學(xué)小升初試卷及解答參考(2024-2025學(xué)年)
- 【課件】2024-2025學(xué)年高一上學(xué)期英語開學(xué)第一課課件
- 專題04 地質(zhì)地貌-備戰(zhàn)2025年高考地理真題題源解密(新高考用)(解析版)
- 市政道路改造工程施工組織設(shè)計
- 2024-2029年擴展塢行業(yè)市場現(xiàn)狀供需分析及市場深度研究發(fā)展前景及規(guī)劃投資研究報告
- SH/T 3003-2024 石油化工合理利用能源設(shè)計導(dǎo)則(正式版)
評論
0/150
提交評論