版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
遼寧省瓦房店市第三高級(jí)中學(xué)2025屆高二上數(shù)學(xué)期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.命題“存在,使得”的否定為()A.存在, B.對(duì)任意,C.對(duì)任意, D.對(duì)任意,2.定義焦點(diǎn)相同,且離心率互為倒數(shù)的橢圓和雙曲線為一對(duì)相關(guān)曲線.已知,是一對(duì)相關(guān)曲線的焦點(diǎn),Р是這對(duì)相關(guān)曲線在第一象限的交點(diǎn),則點(diǎn)Р與以為直徑的圓的位置關(guān)系是()A.在圓外 B.在圓上C.在圓內(nèi) D.不確定3.已知集合,則()A. B.C. D.4.已知O為坐標(biāo)原點(diǎn),,點(diǎn)P是上一點(diǎn),則當(dāng)取得最小值時(shí),點(diǎn)P的坐標(biāo)為()A. B.C. D.5.太極圖被稱為“中華第一圖”,閃爍著中華文明進(jìn)程的光輝,它是由黑白兩個(gè)魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對(duì)統(tǒng)一的和諧美.定義:能夠?qū)AO的周長(zhǎng)和面積同時(shí)等分成兩個(gè)部分的函數(shù)稱為圓O的一個(gè)“太極函數(shù)”,設(shè)圓O:,則下列說法中正確的是()①函數(shù)是圓O的一個(gè)太極函數(shù)②圓O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)③函數(shù)是圓O的一個(gè)太極函數(shù)④函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱是為圓O的太極函數(shù)的充要條件A.①② B.①③C.②③ D.③④6.連擲一枚均勻的骰子兩次,所得向上的點(diǎn)數(shù)分別為m,n,記,則下列說法正確的是()A.事件“”的概率為 B.事件“t是奇數(shù)”與“”互為對(duì)立事件C.事件“”與“”互為互斥事件 D.事件“且”的概率為7.已知且,則的值為()A.3 B.4C.5 D.68.橢圓與(0<k<9)的()A.長(zhǎng)軸的長(zhǎng)相等B.短軸的長(zhǎng)相等C.離心率相等D.焦距相等9.“x>1”是“x>0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.“五一”期間,甲、乙、丙三個(gè)大學(xué)生外出旅游,已知一人去北京,一人去兩安,一人去云南.回來后,三人對(duì)去向作了如下陳述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事實(shí)是甲、乙、丙三人陳述都只對(duì)了一半(關(guān)于去向的地點(diǎn)僅對(duì)一個(gè)).根據(jù)以上信息,可判斷下面說法中正確的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南11.拋物線的焦點(diǎn)到準(zhǔn)線的距離是A.2 B.4C. D.12.已知橢圓的右焦點(diǎn)為,為坐標(biāo)原點(diǎn),為軸上一點(diǎn),點(diǎn)是直線與橢圓的一個(gè)交點(diǎn),且,則橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為________14.已知等差數(shù)列是首項(xiàng)為的遞增數(shù)列,若,,則滿足條件的數(shù)列的一個(gè)通項(xiàng)公式為______15.若在上是減函數(shù),則實(shí)數(shù)a的取值范圍是_________.16.如圖,SD是球O的直徑,A、B、C是球O表面上的三個(gè)不同的點(diǎn),,當(dāng)三棱錐的底面是邊長(zhǎng)為3的正三角形時(shí),則球O的半徑為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓)過點(diǎn)A(0,),且與雙曲線有相同的焦點(diǎn)(1)求橢圓C的方程;(2)設(shè)M,N是橢圓C上異于A的兩點(diǎn),且滿足,試判斷直線MN是否過定點(diǎn),并說明理由18.(12分)已知數(shù)列滿足,(1)設(shè),求證數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為,是否存在正整數(shù)m,使得對(duì)任意的都成立?若存在,求出m的最小值;若不存在,試說明理由19.(12分)如圖,扇形AOB的半徑為2,圓心角,點(diǎn)C為弧AB上一點(diǎn),平面AOB且,點(diǎn)且,面MOC(1)求證:平面平面POB;(2)求平面POA與平面MOC所成二面角的正弦值的大小20.(12分)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱錐S-ABCD的側(cè)面積;(2)求平面SCD與平面SAB的夾角的余弦值.21.(12分)已知的三個(gè)頂點(diǎn)是,,(1)求邊所在的直線方程;(2)求經(jīng)過邊的中點(diǎn),且與邊平行的直線的方程22.(10分)在中,角、、所對(duì)的邊分別為、、,且(1)求證;、、成等差數(shù)列;(2)若,的面積為,求的周長(zhǎng)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結(jié)論.【詳解】由題意可知命題“存在,使得”的否定為“對(duì)任意,”.故選:D.2、A【解析】設(shè)橢圓的長(zhǎng)軸長(zhǎng)為,橢圓的焦距為,雙曲線的實(shí)軸長(zhǎng)為,根據(jù)題意可得,設(shè),根據(jù)橢圓與雙曲線的定義將分別用表示,設(shè),再根據(jù)兩點(diǎn)的距離公式將點(diǎn)的坐標(biāo)用表示,從而可判斷出點(diǎn)與圓的位置關(guān)系.【詳解】解:設(shè)橢圓的長(zhǎng)軸長(zhǎng)為,橢圓的焦距為,雙曲線的實(shí)軸長(zhǎng)為,設(shè)橢圓和雙曲線的離心率分別為,則,所以,以為直徑的圓的方程為,設(shè),則有,所以,設(shè),,所以①,②,則①②得,所以,所以,將代入②得,所以,,則點(diǎn)到圓心的距離為,所以點(diǎn)Р在以為直徑的圓外.故選:A.3、D【解析】由集合的關(guān)系及交集運(yùn)算,逐項(xiàng)判斷即可得解.【詳解】因?yàn)榧?,,所以,?故選:D.【點(diǎn)睛】本題考查了集合關(guān)系的判斷及集合的交集運(yùn)算,考查了運(yùn)算求解能力,屬于基礎(chǔ)題.4、A【解析】根據(jù)三點(diǎn)共線,可得,然后利用向量的減法坐標(biāo)運(yùn)算,分別求得,最后計(jì)算,經(jīng)過化簡(jiǎn)觀察,可得結(jié)果.【詳解】設(shè),則則∴當(dāng)時(shí),取最小值為-10,此時(shí)點(diǎn)P的坐標(biāo)為.故選:A【點(diǎn)睛】本題主要考查向量數(shù)量積的坐標(biāo)運(yùn)算,難點(diǎn)在于三點(diǎn)共線,審清題干,簡(jiǎn)單計(jì)算,屬基礎(chǔ)題.5、B【解析】①③可以通過分析奇偶性和結(jié)合圖象證明出符合要求,②④可以舉出反例.【詳解】是奇函數(shù),且與圓O的兩交點(diǎn)坐標(biāo)為,能夠?qū)AO的周長(zhǎng)和面積同時(shí)等分為兩個(gè)部分,故符合題意,①正確;同理函數(shù)是圓O的一個(gè)太極函數(shù),③正確;例如,是偶函數(shù),也能將將圓O的周長(zhǎng)和面積同時(shí)等分為兩個(gè)部分,故②錯(cuò)誤;函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱不是為圓O的太極函數(shù)的充要條件,例如為奇函數(shù),但不滿足將圓O的周長(zhǎng)和面積同時(shí)等分為兩個(gè)部分,所以④錯(cuò)誤;故選:B6、D【解析】計(jì)算出事件“t=12”的概率可判斷A;根據(jù)對(duì)立事件的概念,可判斷B;根據(jù)互斥事件的概念,可判斷C;計(jì)算出事件“t>8且mn<32”的概率可判斷D;【詳解】連擲一枚均勻的骰子兩次,所得向上的點(diǎn)數(shù)分別為m,n,則共有個(gè)基本事件,記t=m+n,則事件“t=12”必須兩次都擲出6點(diǎn),則事件“t=12”的概率為,故A錯(cuò)誤;事件“t是奇數(shù)”與“m=n”為互斥不對(duì)立事件,如事件m=3,n=5,故B錯(cuò)誤;事件“t=2”與“t≠3”不是互斥事件,故C錯(cuò)誤;事件“t>8且mn<32”有共9個(gè)基本事件,故事件“t>8且mn<32”的概率為,故D正確;故選:D7、C【解析】由空間向量數(shù)量積的坐標(biāo)運(yùn)算求解【詳解】由已知,解得故選:C8、D【解析】根據(jù)橢圓方程求得兩個(gè)橢圓的,由此確定正確選項(xiàng).【詳解】橢圓與(0<k<9)的焦點(diǎn)分別在x軸和y軸上,前者a2=25,b2=9,則c2=16,后者a2=25-k,b2=9-k,則顯然只有D正確故選:D9、A【解析】根據(jù)充分、必要條件間的推出關(guān)系,判斷“x>1”與“x>0”的關(guān)系.【詳解】“x>1”,則“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要條件.故選:A.10、D【解析】根據(jù)題意,先假設(shè)甲去了北京正確,則可分析其他人的陳述是否符合題意,再假設(shè)乙去西安正確,分析其他人的陳述是否符合題意,即可得答案.【詳解】由題意得,甲、乙、丙三人的陳述都只對(duì)了一半,假設(shè)甲去了北京正確,對(duì)于甲的陳述:則乙去西安錯(cuò)誤,則乙去了云南;對(duì)于乙的陳述:甲去了西安錯(cuò)誤,則丙去了北京正確;對(duì)于丙的陳述:甲去了云南錯(cuò)誤,乙去了北京也錯(cuò)誤,故假設(shè)錯(cuò)誤.假設(shè)乙去了西安正確,對(duì)于甲的陳述:則甲去了北京錯(cuò)誤,則甲去了云南;對(duì)于乙的陳述:甲去了西安錯(cuò)誤,則丙去了北京正確;對(duì)于丙的陳述:甲去了云南正確,乙去了北京錯(cuò)誤,此種假設(shè)滿足題意,故甲去了云南.故選:D11、D【解析】因?yàn)閽佄锞€方程可化為,所以拋物線的焦點(diǎn)到準(zhǔn)線的距離是,故選D.考點(diǎn):1、拋物線的標(biāo)準(zhǔn)方程;2、拋物線的幾何性質(zhì).12、D【解析】設(shè)橢圓的左焦點(diǎn)為,由橢圓的對(duì)稱性可知,則,所以,即可得到的關(guān)系,利用橢圓的定義進(jìn)而求得離心率.【詳解】設(shè)橢圓的左焦點(diǎn)為,連接,因?yàn)椋?,如圖所示,所以,設(shè),,則,所以,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、相交【解析】由題意知,兩圓的圓心分別為(-2,0),(2,1),故兩圓的圓心距離為,兩圓的半徑之差為1,半徑之和為5,而1<<5,所以兩圓的位置關(guān)系為相交14、,答案不唯一【解析】由,,可得,進(jìn)而解得,然后寫出通項(xiàng)公式即可.【詳解】設(shè)數(shù)列的公差為d,由題可得,因?yàn)椋?,所以有,解得,只要公差d滿足即可,然后根據(jù)等差數(shù)列的通項(xiàng)公式寫出即可,我們可以取,此時(shí).故答案為:,答案不唯一.15、【解析】根據(jù)導(dǎo)數(shù)的性質(zhì),結(jié)合常變量分離法進(jìn)行求解即可.【詳解】,因?yàn)樵谏鲜菧p函數(shù),所以在上恒成立,即,當(dāng)時(shí),的最小值為,所以,故答案為:16、【解析】由三棱錐是正三棱錐,利用正弦定理得出三角形外接圓的半徑,進(jìn)而求出,再由余弦定理得出球O的半徑.【詳解】因?yàn)?,所以平面,三棱錐是正三棱錐,設(shè)為三角形外接圓的圓心,則在上,連接,,由得出,所以,在中,,即,解得,則球O的半徑為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)直線過定點(diǎn);理由見解析【解析】(1)根據(jù)題意可求得,進(jìn)而求得橢圓方程;(2)考慮直線斜率是否存在,設(shè)直線方程并聯(lián)立橢圓方程,得到根與系數(shù)的關(guān)系式,然后利用,將根與系數(shù)的關(guān)系式代入化簡(jiǎn)得到,結(jié)合直線方程,化簡(jiǎn)可得結(jié)論.【小問1詳解】依題意,,所以,故橢圓方程為:【小問2詳解】當(dāng)直線MN的斜率不存在時(shí),設(shè)M(),N(,),則,,此時(shí)M,N重合,不符合題意;當(dāng)直線MN的斜率存在時(shí),設(shè)MN的方程為:,M(,),N(),與橢圓方程聯(lián)立可得:,即,∴,即,∴,∴,∴,當(dāng)時(shí),,直線MN:,即,令,則,∴直線過定點(diǎn)【點(diǎn)睛】本題考查了橢圓方程的求法以及直線和橢圓相交時(shí)過定點(diǎn)的問題,解答時(shí)要注意解題思路的順暢,解答的難點(diǎn)在于運(yùn)算量較大且復(fù)雜,需要十分細(xì)心.18、(1);(2)存在,3【解析】(1)結(jié)合遞推關(guān)系可證得bn+1-bn1,且b1=1,可證數(shù)列{bn}為等差數(shù)列,據(jù)此可得數(shù)列的通項(xiàng)公式;(2)結(jié)合通項(xiàng)公式裂項(xiàng)有求和有,再結(jié)合條件可得,即求【詳解】(1)證明:∵,又由a1=2,得b1=1,所以數(shù)列{bn}是首項(xiàng)為1,公差為1的等差數(shù)列,所以bn=1+(n-1)×1=n,由,得(2)解:∵,,所以,依題意,要使對(duì)于n∈N*恒成立,只需,解得m≥3或m≤-4又m>0,所以m≥3,所以正整數(shù)m的最小值為319、(1)證明見解析(2)【解析】(1)連接,設(shè)與相交于點(diǎn),連接MN,利用余弦定理可求得,,的長(zhǎng)度,進(jìn)而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得證;(2)建立恰當(dāng)空間直角坐標(biāo)系,求出兩個(gè)平面的法向量,然后利用向量法求解二面角的余弦值,從而即可得答案【小問1詳解】證明:連接,設(shè)與相交于點(diǎn),連接MN,平面,在平面內(nèi),平面平面,,,,在中,由余弦定理可得,,,又在中,,由余弦定理可得,,,故,又平面,在平面內(nèi),,又,平面,又平面,平面平面;【小問2詳解】解:由(1)可知直線,,兩兩互相垂直,所以以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,所以,,設(shè)平面的一個(gè)法向量為,則,可?。辉O(shè)平面的一個(gè)法向量為,則,可取,,平面與平面所成二面角的正弦值為20、(1)(2)【解析】(1)根據(jù)垂直關(guān)系依次求解每個(gè)側(cè)面三角形邊長(zhǎng)和面積即可得解;(2)建立空間直角坐標(biāo)系,利用向量法求解.小問1詳解】由題可得:,則,SA⊥底面ABCD,所以,SA平面SAB,平面SAB⊥底面ABCD,交線,所以BC⊥平面SAB,BC⊥BS,,所以四棱錐的側(cè)面積【小問2詳解】以A為原點(diǎn),建立空間直角坐標(biāo)系如圖所示:設(shè)平面SCD的法向量,,取所以取為平面SAB的的法向量所以平面SCD與平面SAB的夾角的余弦值.21、(1)(2)【解析】(1)利用直線方程的兩點(diǎn)式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度鋼材產(chǎn)業(yè)鏈上下游合作協(xié)議模板
- 科技行業(yè)專題報(bào)告:DeepSeek:技術(shù)顛覆or創(chuàng)新共贏
- 奮斗新時(shí)代決心鑄就輝煌
- 2025版城市地下空間挖掘機(jī)租賃合同協(xié)議書3篇
- 2025個(gè)人藝術(shù)品收藏分期付款合同2篇
- 2025年個(gè)人借款咨詢與風(fēng)險(xiǎn)管理服務(wù)協(xié)議4篇
- 2025版土地承包經(jīng)營權(quán)流轉(zhuǎn)合同示范書6篇
- 2025年全球及中國絕對(duì)大分子多角度光散射檢測(cè)器行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球柔性表面加熱器行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球噴丸服務(wù)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025水利云播五大員考試題庫(含答案)
- 老年髖部骨折患者圍術(shù)期下肢深靜脈血栓基礎(chǔ)預(yù)防專家共識(shí)(2024版)解讀
- 藥企質(zhì)量主管競(jìng)聘
- 信息對(duì)抗與認(rèn)知戰(zhàn)研究-洞察分析
- 中藥飲片驗(yàn)收培訓(xùn)
- 手術(shù)室??谱o(hù)士工作總結(jié)匯報(bào)
- 2025屆高三聽力技巧指導(dǎo)-預(yù)讀、預(yù)測(cè)
- DB34T 1831-2013 油菜收獲與秸稈粉碎機(jī)械化聯(lián)合作業(yè)技術(shù)規(guī)范
- 蘇州市2025屆高三期初陽光調(diào)研(零模)政治試卷(含答案)
- 創(chuàng)傷處理理論知識(shí)考核試題及答案
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
評(píng)論
0/150
提交評(píng)論