2025屆江西省撫州市數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第1頁
2025屆江西省撫州市數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第2頁
2025屆江西省撫州市數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第3頁
2025屆江西省撫州市數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第4頁
2025屆江西省撫州市數(shù)學(xué)高三上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆江西省撫州市數(shù)學(xué)高三上期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)的圖象與直線的相鄰交點間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.2.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.3.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件4.函數(shù)滿足對任意都有成立,且函數(shù)的圖象關(guān)于點對稱,,則的值為()A.0 B.2 C.4 D.15.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.6.在中,,則()A. B. C. D.7.函數(shù)的值域為()A. B. C. D.8.已知,,分別是三個內(nèi)角,,的對邊,,則()A. B. C. D.9.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.10.是正四面體的面內(nèi)一動點,為棱中點,記與平面成角為定值,若點的軌跡為一段拋物線,則()A. B. C. D.11.如圖在直角坐標(biāo)系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.12.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則不等式的解集為____________.14.已知函數(shù),若在定義域內(nèi)恒有,則實數(shù)的取值范圍是__________.15.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____16.若函數(shù)恒成立,則實數(shù)的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知點到拋物線C:y1=1px準(zhǔn)線的距離為1.(Ⅰ)求C的方程及焦點F的坐標(biāo);(Ⅱ)設(shè)點P關(guān)于原點O的對稱點為點Q,過點Q作不經(jīng)過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值.18.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數(shù)的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.19.(12分)在平面直角坐標(biāo)系中,以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于兩點.(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;(2)若點的極坐標(biāo)為,,求的值.20.(12分)已知,,分別為內(nèi)角,,的對邊,若同時滿足下列四個條件中的三個:①;②;③;④.(1)滿足有解三角形的序號組合有哪些?(2)在(1)所有組合中任選一組,并求對應(yīng)的面積.(若所選條件出現(xiàn)多種可能,則按計算的第一種可能計分)21.(12分)已知不等式的解集為.(1)求實數(shù)的值;(2)已知存在實數(shù)使得恒成立,求實數(shù)的最大值.22.(10分)已知等差數(shù)列的前n項和為,等比數(shù)列的前n項和為,且,,.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由題知,利用求出,再根據(jù)題給定義,化簡求出的解析式,結(jié)合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.【點睛】本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關(guān)鍵是對新定義的理解.2、A【解析】

根據(jù)指數(shù)型函數(shù)所過的定點,確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點為,,當(dāng)且僅當(dāng)時等號成立,即時取得最小值.故選:A【點睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計算能力,屬于基礎(chǔ)題型.3、D【解析】

,不能得到,成立也不能推出,即可得到答案.【詳解】因為x,,當(dāng)時,不妨取,,故時,不成立,當(dāng)時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.4、C【解析】

根據(jù)函數(shù)的圖象關(guān)于點對稱可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【詳解】因為函數(shù)的圖象關(guān)于點對稱,所以的圖象關(guān)于原點對稱,所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因為,所以.因為,故,所以.故選:C.【點睛】本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿足,那么是周期為的周期函數(shù),本題屬于中檔題.5、B【解析】

利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點睛】本題以中國傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運算、直觀想象等核心素養(yǎng).6、A【解析】

先根據(jù)得到為的重心,從而,故可得,利用可得,故可計算的值.【詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.【點睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.7、A【解析】

由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域為.故選:A.【點睛】本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎(chǔ)題.8、C【解析】

原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.【點睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎(chǔ)知識;考查運算求解能力,推理論證能力,屬于中檔題.9、C【解析】

將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.10、B【解析】

設(shè)正四面體的棱長為,建立空間直角坐標(biāo)系,求出各點的坐標(biāo),求出面的法向量,設(shè)的坐標(biāo),求出向量,求出線面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標(biāo)的關(guān)系,進而求出正切值.【詳解】由題意設(shè)四面體的棱長為,設(shè)為的中點,以為坐標(biāo)原點,以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標(biāo)系,則可得,,取的三等分點、如圖,則,,,,所以、、、、,由題意設(shè),,和都是等邊三角形,為的中點,,,,平面,為平面的一個法向量,因為與平面所成角為定值,則,由題意可得,因為的軌跡為一段拋物線且為定值,則也為定值,,可得,此時,則,.故選:B.【點睛】考查線面所成的角的求法,及正切值為定值時的情況,屬于中等題.11、A【解析】

設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進而求得切點的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數(shù)的切線方程的求解,考查計算能力,屬于中等題.12、D【解析】

通過列舉法可求解,如兩角分別為時【詳解】當(dāng)時,,但,故充分條件推不出;當(dāng)時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應(yīng)用,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點睛】本題考查分段函數(shù)的應(yīng)用,涉及到解一元二次不等式,考查學(xué)生的計算能力,是一道中檔題.14、【解析】

根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)圖象可將原題轉(zhuǎn)化為恒成立問題,湊而可知的圖象在過原點且與兩函數(shù)相切的兩條切線之間;利用過一點的曲線切線的求法可求得兩切線斜率,結(jié)合分母不為零的條件可最終確定的取值范圍.【詳解】由指數(shù)函數(shù)與對數(shù)函數(shù)圖象可知:,恒成立可轉(zhuǎn)化為恒成立,即恒成立,,即是夾在函數(shù)與的圖象之間,的圖象在過原點且與兩函數(shù)相切的兩條切線之間.設(shè)過原點且與相切的直線與函數(shù)相切于點,則切線斜率,解得:;設(shè)過原點且與相切的直線與函數(shù)相切于點,則切線斜率,解得:;當(dāng)時,,又,滿足題意;綜上所述:實數(shù)的取值范圍為.【點睛】本題考查恒成立問題的求解,重點考查了導(dǎo)數(shù)幾何意義應(yīng)用中的過一點的曲線切線的求解方法;關(guān)鍵是能夠結(jié)合指數(shù)函數(shù)和對數(shù)函數(shù)圖象將問題轉(zhuǎn)化為切線斜率的求解問題;易錯點是忽略分母不為零的限制,忽略對于臨界值能否取得的討論.15、20+45,8【解析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點:1.三視圖;2.空間幾何體的表面積與體積.16、【解析】

若函數(shù)恒成立,即,求導(dǎo)得,在三種情況下,分別討論函數(shù)單調(diào)性,求出每種情況時的,解關(guān)于的不等式,再取并集,即得。【詳解】由題意得,只要即可,,當(dāng)時,令解得,令,解得,單調(diào)遞減,令,解得,單調(diào)遞增,故在時,有最小值,,若恒成立,則,解得;當(dāng)時,恒成立;當(dāng)時,,單調(diào)遞增,,不合題意,舍去.綜上,實數(shù)的取值范圍是.故答案為:【點睛】本題考查恒成立條件下,求參數(shù)的取值范圍,是常考題型。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)C的方程為,焦點F的坐標(biāo)為(1,0);(Ⅱ)1【解析】

(Ⅰ)根據(jù)拋物線定義求出p,即可求C的方程及焦點F的坐標(biāo);

(Ⅱ)設(shè)點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0,設(shè)直線AB的方程為y=k(x+1)?1(k≠0),與拋物線聯(lián)立可得ky1-4y+4k-8=0,利用韋達定理以及弦長公式,轉(zhuǎn)化求解|MF|?|NF|的值.【詳解】(Ⅰ)由已知得,所以p=1.所以拋物線C的方程為,焦點F的坐標(biāo)為(1,0);(II)設(shè)點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0.設(shè)直線AB的方程為y=k(x+1)?1(k≠0).由得,則,.因為點A,B在拋物線C上,所以,.因為PF⊥x軸,所以,所以|MF|?|NF|的值為1.【點睛】本題考查拋物線的定義、標(biāo)準(zhǔn)方程及直線與拋物線中的定值問題,常用韋達定理設(shè)而不求來求解,本題解題關(guān)鍵是找出弦長與斜率之間的關(guān)系進行求解,屬于中等題.18、(1);(2);(2)見解析.【解析】

(1)由圓的方程求出點坐標(biāo),得雙曲線的,再計算出后可得漸近線方程;(2)設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標(biāo),計算;(3)由已知得,設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,設(shè),由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設(shè)由得:,,由得,解得,,,所以,,,當(dāng)且僅當(dāng)三點共線時,等號成立,∴軸上不存在點,使得.【點睛】本題考查求漸近線方程,考查圓與雙曲線相交問題.考查向量的加法運算,本題對學(xué)生的運算求解能力要求較高,解題時都是直接求出交點坐標(biāo).難度較大,屬于困難題.19、(1)曲線的直角坐標(biāo)方程為即,直線的普通方程為;(2).【解析】

(1)利用代入法消去參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標(biāo)方程兩邊同乘以利用即可得曲線的直角坐標(biāo)方程;(2)直線的參數(shù)方程代入圓的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程的幾何意義,利用韋達定理可得結(jié)果.【詳解】(1)由,得,所以曲線的直角坐標(biāo)方程為,即,直線的普通方程為.(2)將直線的參數(shù)方程代入并化簡、整理,得.因為直線與曲線交于,兩點.所以,解得.由根與系數(shù)的關(guān)系,得,.因為點的直角坐標(biāo)為,在直線上.所以,解得,此時滿足.且,故..【點睛】參數(shù)方程主要通過代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式,等可以把極坐標(biāo)方程與直角坐標(biāo)方程互化,這類問題一般我們可以先把曲線方程化為直角坐標(biāo)方程,用直角坐標(biāo)方程解決相應(yīng)問題.20、(1)①,③,④或②,③,④;(2).【解析】

(1)由①可求得的值,由②可求出角的值,結(jié)合題意得出,推出矛盾,可得出①②不能同時成為的條件,由此可得出結(jié)論;(2)在符合條件的兩組三角形中利用余弦定理和正弦定理求出對應(yīng)的邊和角,然后利用三角形的面積公式可求出的面積.【詳解】(1)由①得,,所以,由②得,,解得或(舍),所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論