2025屆山東省威海市示范名校高二上數(shù)學(xué)期末質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
2025屆山東省威海市示范名校高二上數(shù)學(xué)期末質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
2025屆山東省威海市示范名校高二上數(shù)學(xué)期末質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
2025屆山東省威海市示范名校高二上數(shù)學(xué)期末質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
2025屆山東省威海市示范名校高二上數(shù)學(xué)期末質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆山東省威海市示范名校高二上數(shù)學(xué)期末質(zhì)量檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在空間直角坐標(biāo)系中,已知點(diǎn)A(1,1,2),B(-3,1,-2),則線段AB的中點(diǎn)坐標(biāo)是()A.(-2,1,2) B.(-1,1,0)C.(-2,0,1) D.(-1,1,2)2.經(jīng)過兩點(diǎn)直線的傾斜角是()A. B.C. D.3.已知命題:,命題:,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知為橢圓的兩個(gè)焦點(diǎn),過的直線交橢圓于兩點(diǎn),若,則()A. B.C. D.5.已知p:,q:,那么p是q的()A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件6.已知集合A=()A. B.C.或 D.7.某老師希望調(diào)查全校學(xué)生平均每天的自習(xí)時(shí)間.該教師調(diào)查了60位學(xué)生,發(fā)現(xiàn)他們每天的平均自習(xí)時(shí)間是3.5小時(shí).這里的總體是()A.楊高的全校學(xué)生;B.楊高的全校學(xué)生的平均每天自習(xí)時(shí)間;C.所調(diào)查的60名學(xué)生;D.所調(diào)查的60名學(xué)生的平均每天自習(xí)時(shí)間.8.已知,分別是圓和圓上的動(dòng)點(diǎn),點(diǎn)在直線上,則的最小值是()A. B.C. D.9.若直線經(jīng)過,,兩點(diǎn),則直線的傾斜角的取值范圍是()A. B.C. D.10.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),為坐標(biāo)原點(diǎn),且,則()A.4 B.2C. D.11.設(shè)是定義在R上的函數(shù),其導(dǎo)函數(shù)為,滿足,若,則()A. B.C. D.a,b的大小無(wú)法判斷12.設(shè)等差數(shù)列前n項(xiàng)和是,若,則的通項(xiàng)公式可以是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若平面內(nèi)兩條直線,平行,則實(shí)數(shù)______14.已知雙曲線,(,)的左右焦點(diǎn)分別為,過的直線與圓相切,與雙曲線在第四象限交于一點(diǎn),且有軸,則直線的斜率是___________,雙曲線的漸近線方程為___________.15.關(guān)于曲線C:1,有如下結(jié)論:①曲線C關(guān)于原點(diǎn)對(duì)稱;②曲線C關(guān)于直線x±y=0對(duì)稱;③曲線C是封閉圖形,且封閉圖形的面積大于2π;④曲線C不是封閉圖形,且它與圓x2+y2=2無(wú)公共點(diǎn);⑤曲線C與曲線D:|x|+|y|=2有4個(gè)公共點(diǎn),這4點(diǎn)構(gòu)成正方形其中正確結(jié)論的個(gè)數(shù)是_____16.已知拋物線C:,經(jīng)過點(diǎn)P(4,1)的直線l與拋物線C相交于A,B兩點(diǎn),且點(diǎn)P恰為AB的中點(diǎn),F(xiàn)為拋物線的焦點(diǎn),則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)圓的圓心為A,直線l過點(diǎn)且與x軸不重合,l交圓A于C,D兩點(diǎn),過B作AC的平行線交AD于點(diǎn)E(1)判斷與題中圓A的半徑的大小關(guān)系,并寫出點(diǎn)E的軌跡方程;(2)過點(diǎn)作斜率為,的兩條直線,分別交點(diǎn)E的軌跡于M,N兩點(diǎn),且,證明:直線MN必過定點(diǎn)18.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)試討論函數(shù)的單調(diào)性.19.(12分)已知點(diǎn)和直線.(1)求以為圓心,且與直線相切的圓的方程;(2)過直線上一點(diǎn)作圓的切線,其中為切點(diǎn),求四邊形PAMB的面積的最小值.20.(12分)已知雙曲線C:(,)的一條漸近線的方程為,雙曲線C的右焦點(diǎn)為,雙曲線C的左、右頂點(diǎn)分別為A,B(1)求雙曲線C的方程;(2)過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn)(點(diǎn)P在x軸的上方),直線AP的斜率為,直線BQ的斜率為,證明:為定值21.(12分)已知兩點(diǎn)(1)求以線段為直徑的圓C的方程;(2)在(1)中,求過M點(diǎn)的圓C的切線方程22.(10分)如圖,已知橢圓:()的左、右焦點(diǎn)分別為、,離心率為.過的直線與橢圓的一個(gè)交點(diǎn)為,過垂直于的直線與橢圓的一個(gè)交點(diǎn)為,.(1)求橢圓的方程和點(diǎn)的軌跡的方程;(2)若曲線上的動(dòng)點(diǎn)到直線:的最大距離為,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用中點(diǎn)坐標(biāo)公式直接求解【詳解】在空間直角坐標(biāo)系中,點(diǎn),1,,,1,,則線段的中點(diǎn)坐標(biāo)是,,,1,故選:B.2、B【解析】求出直線的斜率后可得傾斜角【詳解】經(jīng)過兩點(diǎn)的直線的斜率為,設(shè)該直線的傾斜角為,則,又,所以.故選:B3、B【解析】利用充分條件和必要條件的定義判斷.【詳解】因?yàn)槊}:或,命題:,所以是的必要不充分條件,故選:B4、C【解析】根據(jù)橢圓的定義可得,由即可求解.【詳解】由,可得根據(jù)橢圓的定義,所以.故選:C5、C【解析】若p成立則q成立且若q成立不能得到p一定成立,p是q充分不必要條件.【詳解】因?yàn)?gt;0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要條件.故選:C.6、A【解析】先求出集合,再根據(jù)集合的交集運(yùn)算,即可求出結(jié)果.【詳解】因?yàn)榧?,所?故選:A.7、B【解析】由總體的概念可得答案.【詳解】某老師希望調(diào)查全校學(xué)生平均每天的自習(xí)時(shí)間,該教師調(diào)查了60位學(xué)生,發(fā)現(xiàn)他們每天的平均自習(xí)時(shí)間是3.5小時(shí),這里的總體是全校學(xué)生平均每天的自習(xí)時(shí)間.故選:B.8、B【解析】由已知可得,,求得關(guān)于直線的對(duì)稱點(diǎn)為,則,計(jì)算即可得出結(jié)果.【詳解】由題意可知圓的圓心為,半徑,圓的圓心為,半徑設(shè)關(guān)于直線的對(duì)稱點(diǎn)為,則解得,則因?yàn)?,分別在圓和圓上,所以,,則因?yàn)椋怨蔬x:B.9、D【解析】應(yīng)用兩點(diǎn)式求直線斜率得,結(jié)合及,即可求的范圍.【詳解】根據(jù)題意,直線經(jīng)過,,,∴直線的斜率,又,∴,即,又,∴;故選:D10、B【解析】依題意可得,設(shè),根據(jù)可得,,根據(jù)為拋物線上一點(diǎn),可得.【詳解】依題意可得,設(shè),由得,所以,,所以,,因?yàn)闉閽佄锞€上一點(diǎn),所以,解得.故選:B.【點(diǎn)睛】本題考查了平面向量加法的坐標(biāo)運(yùn)算,考查了求拋物線方程,屬于基礎(chǔ)題.11、A【解析】首先構(gòu)造函數(shù),再利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可判斷選項(xiàng).【詳解】設(shè),,所以函數(shù)在單調(diào)遞增,即,所以,那么,即.故選:A12、D【解析】根據(jù)題意可得公差的范圍,再逐一分析各個(gè)選項(xiàng)即可得出答案.【詳解】解:設(shè)等差數(shù)列的公差為,由,得,所以,故AB錯(cuò)誤;若,則,與題意矛盾,故C錯(cuò)誤;若,則,符合題意.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、-1或2【解析】根據(jù)兩直線平行,利用直線平行的條件列出方程解得答案.【詳解】∵,∴,解得或,經(jīng)驗(yàn)證都符合題意,故答案為:-1或214、①.②.【解析】由題意,不妨設(shè)直線與圓相切于點(diǎn),由可得,代入雙曲線方程,可得,因此,即得解【詳解】如圖所示,不妨設(shè)直線與圓相切于點(diǎn),,由于代入進(jìn)入,可得,漸近線方程為故答案為:,15、4【解析】直接利用曲線的性質(zhì),對(duì)稱性的應(yīng)用可判斷①②;求出可判斷③;聯(lián)立方程,解方程組可判斷④⑤的結(jié)論【詳解】對(duì)于①,將方程中的x換為﹣x,y換為﹣y,方程不變,曲線C關(guān)于原點(diǎn)對(duì)稱,故①正確;對(duì)于②,將方程中的x換為﹣y,把y換成﹣x,方程不變,曲線C關(guān)于直線x±y=0對(duì)稱,故②正確;對(duì)于③,由方程得,故曲線C不是封閉圖形,故③錯(cuò)誤;對(duì)于④,曲線C:,不是封閉圖形,聯(lián)立整理可得:,方程無(wú)解,故④正確;對(duì)于⑤,曲線C與曲線D:由于,解得,根據(jù)對(duì)稱性,可得公共點(diǎn)為,故曲線C與曲線D有四個(gè)交點(diǎn),這4點(diǎn)構(gòu)成正方形,故⑤正確故答案為:416、9【解析】過A、、作準(zhǔn)線的垂線且分別交準(zhǔn)線于點(diǎn)、、,根據(jù)拋物線的定義可知,由梯形的中位線的性質(zhì)得出,進(jìn)而可求出的結(jié)果.【詳解】由拋物線,可知,則,所以拋物線的焦點(diǎn)坐標(biāo)為,如圖,過點(diǎn)A作垂直于準(zhǔn)線交準(zhǔn)線于,過點(diǎn)作垂直于準(zhǔn)線交準(zhǔn)線于,過點(diǎn)作垂直于準(zhǔn)線交準(zhǔn)線于,由拋物線的定義可得,再根據(jù)為線段的中點(diǎn),而四邊形為梯形,由梯形的中位線可知,則,所以.故答案為:9.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)與半徑相等,(2)證明見解析【解析】(1)依據(jù)橢圓定義去求點(diǎn)E的軌跡方程事半功倍;(2)直線MN要分為斜率存在的和不存在的兩種情況進(jìn)行討論,由設(shè)而不求法把條件轉(zhuǎn)化為直線MN過定點(diǎn)的條件即可解決.【小問1詳解】圓即為,可得圓心,半徑,由,可得,由,可得,即為,即有,則,所以其與半徑相等.因?yàn)?,故E的軌跡為以A,B為焦點(diǎn)的橢圓(不包括左右頂點(diǎn)),且有,,即,,,則點(diǎn)E的軌跡方程為;【小問2詳解】當(dāng)直線MN斜率不存在時(shí),設(shè)直線方程為,則,,,,則,∴,此時(shí)直線MN的方程為當(dāng)直線MN斜率存在時(shí),設(shè)直線方程為:,與橢圓方程聯(lián)立:,得,設(shè),,有則將*式代入化簡(jiǎn)可得:,即,∴,此時(shí)直線MN:,恒過定點(diǎn)又直線MN斜率不存在時(shí),直線MN:也過,故直線MN過定點(diǎn).【點(diǎn)睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問題直觀化、生動(dòng)化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問題便迎刃而解,且解法簡(jiǎn)捷。18、(1)(2)詳見解析.【解析】(1)由,求導(dǎo),得到,寫出切線方程;(2)求導(dǎo),再分,,討論求解.【小問1詳解】解:因?yàn)椋?,則,所以,所以曲線在點(diǎn)處的切線方程是,即;【小問2詳解】因?yàn)?,所以,?dāng)時(shí),成立,則在上遞減;當(dāng)時(shí),令,得,當(dāng)時(shí),,當(dāng)時(shí),,所以在上遞減,在上遞增;綜上:當(dāng)時(shí),在上遞減;當(dāng)時(shí),在上遞減,在上遞增;19、(1)(2)【解析】(1)利用到直線的距離求得半徑,由此求得圓的方程.(2)結(jié)合到直線的距離來(lái)求得四邊形面積的最小值.【小問1詳解】圓的半徑,圓的方程為.【小問2詳解】由四邊形的面積知,當(dāng)時(shí),面積最小.此時(shí)...20、(1);(2)證明見解析.【解析】(1)由題可得,,即求;(2)由題可設(shè)直線方程與雙曲線方程聯(lián)立,利用韋達(dá)定理法即證【小問1詳解】由題意可知在雙曲線C中,,,,解得所以雙曲線C的方程為;【小問2詳解】證法一:由題可知,設(shè)直線,,,由,得,則,,∴,,;當(dāng)直線的斜率不存在時(shí),,此時(shí).綜上,為定值證法二:設(shè)直線PQ方程為,,,聯(lián)立得整理得,由過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn),則解得,,,,由雙曲線方程可得,,,,∵,∴,,證法三:設(shè)直線PQ方程為,,,聯(lián)立得整理得,由過右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn),則解得,∴,,由雙曲線方程可得,,則,所以,,,∴為定值21、(1);(2).【解析】(1)求出圓心和半徑即可得到答案;(2)根據(jù)題意先求出切線的斜率,進(jìn)而通過點(diǎn)斜式求出切線方程.【小問1詳解】由題意,圓心,半徑,則圓C的方程為:.【小問2詳解】由題意,,則切線斜率為-1,所以切線方程為:.22、(1)橢圓的方程為,點(diǎn)的軌跡的方程為(2)【解析】(1)由題意可得,求出,再結(jié)合,求出,從而可得橢圓的方

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論