2025屆安徽省六安一中、舒城中學(xué)、霍邱一中數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題含解析_第1頁
2025屆安徽省六安一中、舒城中學(xué)、霍邱一中數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題含解析_第2頁
2025屆安徽省六安一中、舒城中學(xué)、霍邱一中數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題含解析_第3頁
2025屆安徽省六安一中、舒城中學(xué)、霍邱一中數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題含解析_第4頁
2025屆安徽省六安一中、舒城中學(xué)、霍邱一中數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆安徽省六安一中、舒城中學(xué)、霍邱一中數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.點在圓上,點在直線上,則的最小值是()A. B.C. D.2.魏晉時期數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù),他在《九章算術(shù)》方田章圓田術(shù)中指出:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”這是注述中所用的割圓術(shù)是一種無限與有限的轉(zhuǎn)化過程,比如在正數(shù)中的“”代表無限次重復(fù),設(shè),則可以利用方程求得,類似地可得到正數(shù)()A.2 B.3C. D.3.執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.4.某三棱錐的三視圖如圖所示,則該三棱錐內(nèi)切球的表面積為A.B.C.D.5.已知圓和橢圓.直線與圓交于、兩點,與橢圓交于、兩點.若時,的取值范圍是,則橢圓的離心率為()A. B.C. D.6.已知圓,圓,則兩圓的公切線的條數(shù)為()A.1 B.2C.3 D.47.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對立事件 B.與互斥C.與相等 D.8.如圖,雙曲線的左,右焦點分別為,,過作直線與C及其漸近線分別交于Q,P兩點,且Q為的中點.若等腰三角形的底邊的長等于C的半焦距.則C的離心率為()A. B.C. D.9.已知空間三點,,在一條直線上,則實數(shù)的值是()A.2 B.4C.-4 D.-210.設(shè)集合,集合,當(dāng)有且僅有一個元素時,則r的取值范圍為()A.或 B.或C.或 D.或11.把點隨機投入長為,寬為的矩形內(nèi),則點與矩形四邊的距離均不小于的概率為()A. B.C. D.12.若函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標(biāo)系O-xyz中,平面OAB的一個法向量為=(2,-2,1),已知點P(-1,3,2),則點P到平面OAB的距離d等于__________________14.與直線平行,且距離為的直線方程為______15.已知橢圓的焦點分別為,A為橢圓上一點,則________16.如圖,一個小球從10m高處自由落下,每次著地后又彈回到原來高度的,若已知小球經(jīng)過的路程為,則小球落地的次數(shù)為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2(1)求四棱錐P﹣ABCD的體積V;(2)若F為PC的中點,求證PC⊥平面AEF18.(12分)已知,,其中(1)已知,若為真,求的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍19.(12分)已知三角形的三個頂點,求邊所在直線的方程,以及該邊上中線所在直線的方程20.(12分)已知函數(shù)()(1)討論函數(shù)的單調(diào)區(qū)間;(2)若有兩個極值點,(),且不等式恒成立,求實數(shù)m的取值范圍21.(12分)已知數(shù)列滿足,,,.從①,②這兩個條件中任選一個填在橫線上,并完成下面問題.(1)寫出、,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.22.(10分)已知橢圓經(jīng)過點,且離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知點A,B是橢圓C的上,下頂點,點P是直線上的動點,直線PA與橢圓C的另一交點為E,直線PB與橢圓C的另一交點為F.證明:直線EF過定點

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意可知圓心,又由于線外一點到已知直線的垂線段最短,結(jié)合點到直線的距離公式,即可求出結(jié)果.【詳解】由題意可知,圓心,所以圓心到的距離為,所以的最小值為.故選:B.2、A【解析】設(shè),則,解方程可得結(jié)果.【詳解】設(shè),則且,所以,所以,所以,所以或(舍).所以.故選:A【點睛】關(guān)鍵點點睛:設(shè)是解題關(guān)鍵.3、B【解析】根據(jù)程序框圖的循環(huán)邏輯寫出其執(zhí)行步驟,即可確定輸出結(jié)果.【詳解】由程序框圖的邏輯,執(zhí)行步驟如下:1、:執(zhí)行循環(huán),,;2、:執(zhí)行循環(huán),,;3、:執(zhí)行循環(huán),,;4、:執(zhí)行循環(huán),,;5、:執(zhí)行循環(huán),,;6、:不成立,跳出循環(huán).∴輸出的值為.故選:B.4、A【解析】由三視圖可知該幾何體是一個三棱錐,根據(jù)等積法求出幾何體內(nèi)切球的半徑,再計算內(nèi)切球的表面積【詳解】解:由三視圖知該幾何體是一個三棱錐,放入棱長為2的正方體中,如圖所示:設(shè)三棱錐內(nèi)切球的半徑為,則由等體積法得,解得,所以該三棱錐內(nèi)切球的表面積為故選:A【點睛】本題考查了由三視圖求三棱錐內(nèi)切球表面積的應(yīng)用問題,屬于中檔題5、C【解析】由題設(shè),根據(jù)圓與橢圓的對稱性,假設(shè)在第一象限可得,結(jié)合已知有,進(jìn)而求橢圓的離心率.【詳解】由題設(shè),圓與橢圓的如下圖示:又時,的取值范圍是,結(jié)合圓與橢圓的對稱性,不妨假設(shè)在第一象限,∴從0逐漸增大至無窮大時,,故,∴故選:C.6、B【解析】根據(jù)圓的方程,求得圓心距和兩圓的半徑之和,之差,判斷兩圓的位置關(guān)系求解.【詳解】因為圓,圓,所以,,所以,所以兩圓相交,所以兩圓的公切線的條數(shù)為2,故選:B7、D【解析】利用互斥事件和對立事件的定義分析判斷即可【詳解】因為拋擲兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對立,也不相等,,所以ABC錯誤,D正確,故選:D8、C【解析】先根據(jù)等腰三角形的性質(zhì)得,再根據(jù)雙曲線定義以及勾股定理列方程,解得離心率.【詳解】連接,由為等腰三角形且Q為的中點,得,由知.由雙曲線的定義知,在中,,(負(fù)值舍去)故選:C【點睛】本題考查雙曲線的定義、雙曲線的離心率,考查基本分析求解能力,屬基礎(chǔ)題.9、C【解析】根據(jù)三點在一條直線上,利用向量共線原理,解出實數(shù)的值.【詳解】解:因為空間三點,,在一條直線上,所以,故.所以.故選:C.【點睛】本題主要考查向量共線原理,屬于基礎(chǔ)題.10、B【解析】由已知得集合M表示以點圓心,以2半徑左半圓,與y軸的交點為,集合N表示以點為圓心,以r為半徑的圓,當(dāng)圓C與圓O相外切于點P,有且僅有一個元素時,圓C過點M時,有且有兩個元素,當(dāng)圓C過點N,有且僅有一個元素,由此可求得r的取值范圍.【詳解】解:由得,所以集合M表示以點圓心,以2半徑的左半圓,與y軸的交點為,集合表示以點為圓心,以r為半徑的圓,如下圖所示,當(dāng)圓C與圓O相外切于點P時,有且僅有一個元素時,此時,當(dāng)圓C過點M時,有兩個元素,此時,所以,當(dāng)圓C過點N時,有且僅有一個元素,此時,所以,所以當(dāng)有且僅有一個元素時,則r的取值范圍為或,故選:B.11、A【解析】確定矩形四邊的距離均不小于的點構(gòu)成的區(qū)域,由幾何概型面積型的公式計算可得結(jié)果.【詳解】若點與矩形四邊的距離均不小于,則其落在如圖所示的陰影區(qū)域內(nèi),所求概率.故選:A.12、D【解析】,∵函數(shù)在區(qū)間單調(diào)遞增,∴在區(qū)間上恒成立.∴,而在區(qū)間上單調(diào)遞減,∴.∴取值范圍是.故選D考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】O是平面OAB上一個點,設(shè)點P到平面OAB的距離為d,則d=∵=(-1,3,2).(2,-2,1)=-6,∴d==2即點P到平面OAB的距離為2考點:空間向量在立體幾何中的運用14、或【解析】由題意,設(shè)所求直線方程為,根據(jù)兩平行直線間的距離公式即可求解.【詳解】解:由題意,設(shè)所求直線方程為,因為直線與直線的距離為,所以,解得或,所以所求直線方程為或,故答案為:或.15、4【解析】直接利用橢圓的定義即可求解.【詳解】因為橢圓的焦點分別為,A為橢圓上一點,所以.故答案為:416、4【解析】設(shè)小球從第(n-1)次落地到第n次落地時經(jīng)過的路程為m,則由已知可得數(shù)列是從第2項開始以首項為,公比為的等比數(shù)列,根據(jù)等比數(shù)列的通項公式求得,再設(shè)設(shè)小球第n次落地時,經(jīng)過的路程為,由等比數(shù)列的求和公式建立方程求解即可.【詳解】解:設(shè)小球從第(n-1)次落地到第n次落地時經(jīng)過的路程為m,則當(dāng)時,得出遞推關(guān)系,所以數(shù)列是從第2項開始以首項為,公比為的等比數(shù)列,所以,且,設(shè)小球第n次落地時,經(jīng)過的路程為,所以,所以,解得,故答案為:4.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析.【解析】(1)在中,,求得,由此能求出四棱錐的體積;(2)由平面,證得和,由此利用線面垂直的判定定理,即可證得平面.試題解析:(1)在中,.在中,.則.(2),為的中點,.平面.平面.為中點,為為中點,,則.平面.考點:四棱錐的體積公式;直線與平面垂直的判定與證明.18、(1)(2)【解析】(1)求出兩個命題為真命題時的解集然后利用為真,取并求得的取值范圍;(2)由是的充分不必要條件,即,,其逆否命題為,列出不等式組求解即可.【詳解】(1)由,解得,所以又,因為,解得,所以.當(dāng)時,,又為真,所以.(2)由是的充分不必要條件,即,,其逆否命題為,由(1),,所以,即:【點睛】該題考查的是有關(guān)邏輯的問題,涉及到的知識點有命題的真假判斷與應(yīng)用,充分不必要條件對應(yīng)的等價結(jié)果,注意原命題與逆否命題等價,屬于簡單題目.19、;【解析】根據(jù)兩點式方程和中點坐標(biāo)公式求解,并化為一般式方程即可.【詳解】解:過的兩點式方程為,整理得即邊所在直線的方程為,邊上的中線是頂點A與邊中點M所連線段,由中點坐標(biāo)公式可得點M的坐標(biāo)為,即過,的直線的方程為,即整理得所以邊上中線所在直線的方程為20、(1)時,在遞增,時,在遞減,在遞增(2)【解析】(1)求出函數(shù)導(dǎo)數(shù),分和兩種情況討論可得單調(diào)性;(2)根據(jù)導(dǎo)數(shù)可得有兩個極值點等價于有兩不等實根,則可得出,進(jìn)而得出,可得恒成立,等價于,構(gòu)造函數(shù)求出最小值即可.【小問1詳解】的定義域是,,①時,,則,在遞增;②時,令,解得,令,解得,故在遞減,在遞增.綜上,時,在遞增時,在遞減,在遞增【小問2詳解】,定義域是,有2個極值點,,即,則有2個不相等實數(shù)根,,∴,,解得,且,,從而,由不等式恒成立,得恒成立,令,當(dāng)時,恒成立,故函數(shù)在上單調(diào)遞減,∴,故實數(shù)m的取值范圍是【點睛】關(guān)鍵點睛:本題考查利用導(dǎo)數(shù)解決不等式的恒成立問題,解題的關(guān)鍵是將有兩個極值點等價于有兩不等實根,以此求出,再將不等式恒成立轉(zhuǎn)化為求的最小值.21、(1)條件選擇見解析,,,(2)【解析】(1)選①,推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的首項和公比,可求得,并可求得、;選②,推導(dǎo)出數(shù)列是等比數(shù)列,確定該數(shù)列的首項和公比,可求得,可求得,由此可得出、;(2)求得,,分為偶數(shù)、奇數(shù)兩種情況討論,結(jié)合并項求和法以及等比數(shù)列求和公式可求得.【小問1詳解】解:若選①,,且,故數(shù)列是首項為,公比為的等比數(shù)列,,故;若選②,,所以,,且,故數(shù)列是以為首項,以為公比的等比數(shù)列,所以,,故,所以,,故,.【小問2詳解】解:由(1)可知,則,所以,.當(dāng)為偶數(shù)時,;當(dāng)為奇數(shù)時,.綜上所述,.22、(1);(2)證明見解析.【解析】(1)根據(jù)題意,列出的方程組,通過解方程組,即可求出答案.(2)法一:設(shè),,;當(dāng)時,根據(jù)點的坐標(biāo)寫出直線PA的方程,與橢圓方程聯(lián)立,可求出點的坐標(biāo);同理可求出點的坐標(biāo),然后即可求出直線EF的方程,從而證明直線EF過定點.法二:首先根據(jù)時直線EF的方程為,可判斷出直線EF過的定點M必在y軸上,設(shè)為;然后同方法一,求出點,的坐標(biāo),根據(jù),即可求出的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論