版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省皖西南聯(lián)盟高二數(shù)學第一學期期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x,y滿足約束條件,則的最大值為()A.1 B.0C.?1 D.?32.數(shù)列滿足,,,則數(shù)列的前8項和為()A.25 B.26C.27 D.283.等軸雙曲線的中心在原點,焦點在軸上,與拋物線的準線交于兩點,且則的實軸長為A.1 B.2C.4 D.84.雙曲線x21的漸近線方程是()A.y=±x B.y=±xC.y=± D.y=±2x5.甲,乙、丙、丁、戊共5人隨機地排成一行,則甲、乙相鄰,丙、丁不相鄰的概率為()A. B.C. D.6.已知平面,的法向量分別為,,則()A. B.C.,相交但不垂直 D.,的位置關系不確定7.已知,是橢圓的左,右焦點,是的左頂點,點在過且斜率為的直線上,為等腰三角形,,則的離心率為A. B.C. D.8.已知正三棱柱的側棱長與底面邊長相等,則AB1與側面ACC1A1所成角的正弦值等于A. B.C. D.9.△ABC兩個頂點坐標A(-4,0),B(4,0),它的周長是18,則頂點C的軌跡方程是()A. B.(y≠0)C. D.10.函數(shù),則曲線在點處的切線方程為()A. B.C. D.11.已知函數(shù),則的值為()A. B.C. D.12.已知點是雙曲線的左焦點,是雙曲線右支上一動點,過點作軸垂線并延長交雙曲線左支于點,當點向上移動時,的值()A.增大 B.減小C.不變 D.無法確定二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,,則______.14.若橢圓的一個焦點為,則p的值為______15.已知橢圓的左、右焦點為,過作x軸垂線交橢圓于點P,若為等腰直角三角形,則橢圓的離心率是___________.16.已知直線l是拋物線()的準線,半徑為的圓過拋物線的頂點O和焦點F,且與l相切,則拋物線C的方程為___________;若A為C上一點,l與C的對稱軸交于點B,在中,,則的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖甲,在直角三角形中,已知,,,D,E分別是的中點.將沿折起,使點A到達點的位置,且,連接,得到如圖乙所示的四棱錐,M為線段上一點.(1)證明:平面平面;(2)過B,C,M三點的平面與線段A'E相交于點N,從下列三個條件中選擇一個作為已知條件,求直線DN與平面A'BC所成角的正弦值.①;②直線與所成角的大小為;③三棱錐的體積是三棱錐體積的注:如果選擇多個條件分別解答,按第一個解答計分.18.(12分)已知:,:.(1)當時,求實數(shù)的取值范圍;(2)若是的充分不必要條件,求實數(shù)的取值范圍.19.(12分)如圖,在正方體中,是棱的中點.(1)試判斷直線與平面的位置關系,并說明理由;(2)求證:直線面.20.(12分)在平面直角坐標系xOy中,橢圓C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為(t為參數(shù))(Ⅰ)寫出橢圓C的普通方程和直線l的傾斜角;(Ⅱ)若點P(1,2),設直線l與橢圓C相交于A,B兩點,求|PA|·|PB|的值21.(12分)已知函數(shù),其中a為正數(shù)(1)討論單調性;(2)求證:22.(10分)已知函數(shù)在區(qū)間上有最大值和最小值(1)求實數(shù)、的值;(2)設,若不等式,在上恒成立,求實數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先畫出可行域,由,得,作出直線,過點時,取得最大值,求出點的坐標代入目標函數(shù)中可得答案【詳解】不等式組表示的可行域如圖所示,由,得,作出直線,過點時,取得最大值,由,得,即,所以的最大值為,故選:B2、C【解析】根據(jù)通項公式及求出,從而求出前8項和.【詳解】當時,,當時,,當時,,當時,,當時,,當時,,則數(shù)列的前8項和為.故選:C3、B【解析】設等軸雙曲線的方程為拋物線,拋物線準線方程為設等軸雙曲線與拋物線的準線的兩個交點,,則,將,代入,得等軸雙曲線的方程為的實軸長為故選4、D【解析】根據(jù)雙曲線漸近線定義即可求解.【詳解】雙曲線的方程為,雙曲線的漸近線方程為,故選:D【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.5、A【解析】先求出所有的基本事件,再求出甲、乙相鄰,丙、丁不相鄰的基本事件,根據(jù)古典概型的概率公式求解即可【詳解】甲,乙、丙、丁、戊共5人隨機地排成一行有種方法,甲、乙相鄰,丙、丁不相鄰的排法為先將甲、乙捆綁在一起,再與戊進行排列,然后丙、丁從3個空中選2個空插入,則共有種方法,所以甲、乙相鄰,丙、丁不相鄰的概率為,故選:A6、C【解析】利用向量法判斷平面與平面的位置關系.【詳解】因為平面,的法向量分別為,,所以,即不垂直,則,不垂直,因為,即即不平行,則,不平行,所以,相交但不垂直,故選:C7、D【解析】分析:先根據(jù)條件得PF2=2c,再利用正弦定理得a,c關系,即得離心率.詳解:因為等腰三角形,,所以PF2=F1F2=2c,由斜率為得,,由正弦定理得,所以,故選D.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于的方程或不等式,再根據(jù)的關系消掉得到的關系式,而建立關于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.8、C【解析】過作,連接,由于,故平面,所以所求直線與平面所成的角為,設棱長為,則,故,.點睛:本題主要考查空間立體幾何直線與平面的位置關系,考查直線與平面所成的角,考查線面垂直的證明方法和常見幾何體的結構特征.由于題目所給幾何體為直三棱柱,故側棱和底面垂直,這是一個重要的隱含條件,通過作交線的垂線,即可得到高,由此作出二面角的平面角.9、D【解析】根據(jù)三角形的周長得出,再由橢圓的定義得頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,可求得頂點C的軌跡方程.【詳解】因為,所以,所以頂點C的軌跡為以A,B為焦點的橢圓,去掉A,B,C共線的情況,即,所以頂點C的軌跡方程是,故選:D.【點睛】本題考查橢圓的定義,由定義求得動點的軌跡方程,求解時,注意去掉不滿足的點,屬于基礎題.10、D【解析】對函數(shù)求導,利用導數(shù)的幾何意義求出切線斜率即可計算作答.【詳解】依題意,,即有,而,則過點,斜率為1的直線方程為:,所以曲線在點處切線方程為.故選:D11、C【解析】利用導數(shù)公式及運算法則求得,再求解【詳解】因為,所以,所以故選:C12、C【解析】令雙曲線右焦點為,由對稱性可知,,結合雙曲線的定義即可得出結果.【詳解】令雙曲線右焦點為,由對稱性可知,,則,為常數(shù),故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、1023【解析】由數(shù)列遞推公式求特定項,依次求下去即可解決.【詳解】數(shù)列中,則,,,,,,故答案為:102314、3【解析】利用橢圓標準方程概念求解【詳解】因為焦點為,所以焦點在y軸上,所以故答案:315、##【解析】以為等腰直角三角形列方程組可得之間的關系式,進而求得橢圓的離心率.【詳解】橢圓的左、右焦點為,點P由為等腰直角三角形可知,,即可化為,故或(舍)故答案為:16、①.②.【解析】(1)由題意得:圓的圓心橫坐標為,半徑為,列方程,即可得到答案;(2)由正弦定理得,從而求得直線的方程,求出點的坐標,即可得到答案;【詳解】由題意得:圓的圓心橫坐標為,半徑為,,拋物線C的方程為;設到準線的距離為,,,,,代入,解得:,,,故答案為:;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理及面面垂直的判定定理可得證;(2)分別選①,②,③可求得為的中點,再以為坐標原點,向量的方向分別為軸,軸,軸建立空間直角坐標系.利用空間向量求得所求的線面角.【小問1詳解】分別為的中點,.,,.,,平面.又平面,∴平面平面.【小問2詳解】(2)選①,;,,,,為的中點.選②,直線與所成角的大小為;,∴直線與所成角為.又直線與所成角的大小為,,,為的中點.選③,三棱錐的體積是三棱錐體積的,又,即,為的中點.∵過三點的平面與線段相交于點平面,平面.又平面平面,,為的中點.兩兩互相垂直,∴以為坐標原點,向量的方向分別為軸,軸,軸的正方向,建立如圖所示的空間直角坐標系.則;.設平面的一個法向量為,直線與平面所成的角為.由,得.令,得.則.∴直線與平面所成角的正弦值為.18、(1);(2).【解析】(1)將代入即可求解;(2)首先結合已知條件分別求出命題和的解,寫出,然后利用充分不必要的特征即可求解.【詳解】(1)由題意可知,,解得,故實數(shù)的取值范圍為;(2)由,解得或,由,解得,故命題:或;命題:,從而:或,因為是的充分不必要條件,所以或或,從而,解得,故實數(shù)的取值范圍為.19、(1)平面AEC,理由見解析(2)證明見解析【解析】(1)以線面平行的判定定理去證明直線與平面平行即可;(2)以線面垂直的判定定理去證明直線面即可.【小問1詳解】連接BD,設,連接OE.在中,O、E分別是BD、的中點,則.因為直線OE在平面AEC上,而直線不在平面AEC上,根據(jù)直線與平面平行的判定定理,得到直線平面AEC.【小問2詳解】正方體中,故,又,故同理故,又,故又根據(jù)直線與平面垂直的判定定理,得直線平面.20、(I)見解析;(Ⅱ).【解析】(Ⅰ)利用平方法消去θ得到橢圓C的普通方程為,根據(jù)直線參數(shù)方程的幾何意義求出直線的斜率,從而可得結果;(Ⅱ)把直線的方程,代入中,利用直線參數(shù)方程的幾何意義求出直線的斜率結合韋達定理可得結果.試題解析:(Ⅰ)消去θ得到橢圓C的普通方程為∵直線的斜率為,∴直線l的傾斜角為(Ⅱ)把直線的方程,代入中,得即,∴t1·t2=4,即|PA|·|PB|=421、(1)答案見解析(2)證明見解析【解析】(1)求解函數(shù)的導函數(shù),并且求的兩個根,然后分類討論,和三種情況下對應的單調性;(2)令,通過二次求導法,判斷函數(shù)的單調性與最小值,設的零點為,求出取值范圍,最后將轉化為的對勾函數(shù)并求解最小值,即可證明出不等式.【小問1詳解】函數(shù)的定義域為∵令得∵,∴,得或①當,即時,時,或;時,.∴在上單調遞增,在上單調遞減,在上單調遞增②當,即時,時,或;時,.∴在上單調遞增,在上單調遞減,在上單調遞增③當,即時,∴在上單調遞增綜上所述:當時,在和上單調遞增,在上單調遞減;當時,在和上單調遞增,在上單調遞減;當時,在上單調遞增【小問2詳解】令,()∴,令∴,∴在上單調遞增又∵,,∴使得,即(*)∴當時,,∴,∴單調遞減∴當時,,∴,∴單調遞增∴,()由(*)式可知:,∴,∴∵,∴函數(shù)單調遞減∴,∴∴【點睛】求解本題的關鍵是利用二次求導法,通過虛設零點,求解原函數(shù)的單調性與最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆荊門市重點中學高二數(shù)學第一學期期末復習檢測模擬試題含解析
- 2025屆甘肅省蘭州新區(qū)舟曲中學生物高一第一學期期末預測試題含解析
- 廣安市重點中學2025屆高一數(shù)學第一學期期末監(jiān)測模擬試題含解析
- 2025屆北京市西城區(qū)市級名校生物高一第一學期期末學業(yè)水平測試模擬試題含解析
- 上海市寶山區(qū)上海交大附中2025屆高二生物第一學期期末統(tǒng)考模擬試題含解析
- 2025屆內蒙古呼和浩特市第六中學高一生物第一學期期末經(jīng)典試題含解析
- 天津市西青區(qū)2025屆高三英語第一學期期末質量跟蹤監(jiān)視模擬試題含解析
- 湖北省黃岡市黃岡中學2025屆數(shù)學高二上期末綜合測試模擬試題含解析
- 江蘇省無錫市石塘灣中學2025屆高三語文第一學期期末檢測試題含解析
- 河北省永年縣第二中學2025屆高二上生物期末學業(yè)水平測試試題含解析
- YY/T 0612-2022一次性使用人體動脈血樣采集器(動脈血氣針)
- JJG 693-2011可燃氣體檢測報警器
- GB/T 9441-2009球墨鑄鐵金相檢驗
- 牦牛胴體、分割肉示意表
- 國學第九冊第四課《道育萬物》第四課時優(yōu)秀教案
- 時代與變革-為人生而藝術(第一課時) 課件- 高中美術人美版(2019)美術鑒賞
- 《膜分離技術》教學課件
- 法人單位基礎信息庫設計方案
- 高級會計師評審個人業(yè)績報告(精選9篇)
- ??低曄盗姓f明書-ivms-4200客戶端用戶手冊
- 中石油公司資質管理相關規(guī)定及工作要求課件
評論
0/150
提交評論