山東省臨沂市莒南縣第三中學2025屆數(shù)學高一上期末經(jīng)典模擬試題含解析_第1頁
山東省臨沂市莒南縣第三中學2025屆數(shù)學高一上期末經(jīng)典模擬試題含解析_第2頁
山東省臨沂市莒南縣第三中學2025屆數(shù)學高一上期末經(jīng)典模擬試題含解析_第3頁
山東省臨沂市莒南縣第三中學2025屆數(shù)學高一上期末經(jīng)典模擬試題含解析_第4頁
山東省臨沂市莒南縣第三中學2025屆數(shù)學高一上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省臨沂市莒南縣第三中學2025屆數(shù)學高一上期末經(jīng)典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.2.已知集合,,若,則a的取值范圍是A B.C. D.3.過原點和直線與的交點的直線的方程為()A. B.C. D.4.函數(shù)f(x)=x-的圖象關(guān)于()Ay軸對稱 B.原點對稱C.直線對稱 D.直線對稱5.如圖所示,正方體中,分別為棱的中點,則在平面內(nèi)與平面平行的直線A.不存在 B.有1條C.有2條 D.有無數(shù)條6.已知函數(shù)(,且)在上單調(diào)遞減,且關(guān)于x的方程恰有兩個不相等的實數(shù)解,則的取值范圍是A. B.[,]C.[,]{} D.[,){}7.函數(shù)單調(diào)遞增區(qū)間為A. B.C. D.8.函數(shù)滿足:為偶函數(shù):在上為增函數(shù)若,且,則與的大小關(guān)系是A. B.C. D.不能確定9.已知集合,,有以下結(jié)論:①;②;③.其中錯誤的是()A.①③ B.②③C.①② D.①②③10.已知向量,若與垂直,則的值等于A. B.C.6 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.已知角的終邊經(jīng)過點,則的值為_______________.12.__________.13.函數(shù)的最小正周期是________.14.已知正四棱錐的底面邊長為4cm,高與斜高的夾角為,則該正四棱錐的側(cè)面積等于________cm215.已知函數(shù)滿足,若函數(shù)與圖像的交點為,,,,,則__________16.函數(shù)的定義域為_____________________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.解下列關(guān)于的不等式;(1);(2).18.已知全集,集合,集合.(1)當時,求,;(2)若,求實數(shù)的取值范圍.19.如圖,在平面直角坐標系中,點為單位圓與軸正半軸的交點,點為單位圓上的一點,且,點沿單位圓按逆時針方向旋轉(zhuǎn)角后到點.(1)當時,求的值;(2)設(shè),求的取值范圍.20.2020年春節(jié)前后,一場突如其來的新冠肺炎疫情在武漢出現(xiàn)并很快地傳染開來(已有證據(jù)表明2019年10月、11月國外已經(jīng)存在新冠肺炎病毒),對人類生命形成巨大危害.在中共中央、國務(wù)院強有力的組織領(lǐng)導下,全國人民萬眾一心抗擊、防控新冠肺炎,疫情早在3月底已經(jīng)得到了非常好的控制(累計病亡人數(shù)3869人),然而國外因國家體制、思想觀念的不同,防控不力,新冠肺炎疫情越來越嚴重.疫情期間造成醫(yī)用防護用品短缺,某廠家生產(chǎn)醫(yī)用防護用品需投入年固定成本為100萬元,每生產(chǎn)萬件,需另投入流動成本為萬元,在年產(chǎn)量不足19萬件時,(萬元),在年產(chǎn)量大于或等于19萬件時,(萬元),每件產(chǎn)品售價為25元,通過市場分析,生產(chǎn)的醫(yī)用防護用品當年能全部售完(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬件)的函數(shù)解析式;(注:年利潤=年銷售收入-固定成本-流動成本)(2)年產(chǎn)量為多少萬件時,某廠家在這一商品的生產(chǎn)中所獲利潤最大?最大利潤是多少?21.已知函數(shù)的圖像如圖所示.(1)求函數(shù)的解析式;(2)當時,求函數(shù)的最大值和最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題可得該幾何體為正方體的一半,截去了一個三棱錐,即得.【詳解】由三視圖可知該幾何體為正方體的一半,截去了一個三棱錐,如圖,則其體積為.故選:A.2、D【解析】化簡集合A,根據(jù),得出且,從而求a的取值范圍,得到答案詳解】由題意,集合或,;若,則且,解得,所以實數(shù)的取值范圍為故選D【點睛】本題主要考查了對數(shù)函數(shù)的運算性質(zhì),以及集合的運算問題,其中解答中正確求解集合A,再根據(jù)集合的運算求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、C【解析】先求出兩直線的交點,從而可得所求的直線方程.【詳解】由可得,故過原點和交點的直線為即,故選:C.4、B【解析】函數(shù)f(x)=x-則f(-x)=-x+=-f(x),由奇函數(shù)的定義即可得出結(jié)論.【詳解】函數(shù)f(x)=x-則f(-x)=-x+=-f(x),所以函數(shù)f(x)奇函數(shù),所以圖象關(guān)于原點對稱,故選B.【點睛】本題考查了函數(shù)的對稱性,根據(jù)函數(shù)解析式特點得出f(-x)=-f(x)即可得出函數(shù)為奇函數(shù),屬于基礎(chǔ)題.5、D【解析】根據(jù)已知可得平面與平面相交,兩平面必有唯一的交線,則在平面內(nèi)與交線平行的直線都與平面平行,即可得出結(jié)論.【詳解】平面與平面有公共點,由公理3知平面與平面必有過的交線,在平面內(nèi)與平行的直線有無數(shù)條,且它們都不在平面內(nèi),由線面平行的判定定理可知它們都與平面平行.故選:D.【點睛】本題考查平面的基本性質(zhì)、線面平行的判定,熟練掌握公理、定理是解題的關(guān)鍵,屬于基礎(chǔ)題.6、C【解析】由在上單調(diào)遞減可知,由方程恰好有兩個不相等的實數(shù)解,可知,,又時,拋物線與直線相切,也符合題意,∴實數(shù)的取值范圍是,故選C.【考點】函數(shù)性質(zhì)綜合應(yīng)用【名師點睛】已知函數(shù)有零點求參數(shù)取值范圍常用的方法和思路:(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解7、A【解析】,所以.故選A8、A【解析】根據(jù)題意,由為偶函數(shù)可得函數(shù)的對稱軸為,進而結(jié)合函數(shù)的單調(diào)性可得上為減函數(shù),結(jié)合,且分析可得,據(jù)此分析可得答案【詳解】根據(jù)題意,函數(shù)滿足為偶函數(shù),則函數(shù)的對稱軸為,則有,又由在上為增函數(shù),則在上為減函數(shù),若,則,又由,則,則有,又由,則,故選A【點睛】本題考查函數(shù)的單調(diào)性與奇偶性的綜合應(yīng)用,涉及函數(shù)的對稱性,屬于中檔題9、C【解析】解出不等式,得到集合,然后逐一判斷即可.【詳解】由可得所以,故①錯;,②錯;,③對,故選:C10、B【解析】,所以,則,故選B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】到原點的距離.考點:三角函數(shù)的定義.12、1【解析】應(yīng)用誘導公式化簡求值即可.【詳解】原式.故答案為:1.13、【解析】直接利用三角函數(shù)的周期公式,求出函數(shù)的周期即可.【詳解】函數(shù)中,.故答案為:【點睛】本題考查三角函數(shù)的周期公式的應(yīng)用,是基礎(chǔ)題.14、32【解析】在正四棱錐的高和斜高所在的直角三角形中計算出斜高后,根據(jù)三角形的面積公式即可求出側(cè)面積.【詳解】因為正四棱錐的底面邊長為4cm,高與斜高的夾角為,所以斜高為cm,所以該正四棱錐的側(cè)面積等于cm2故答案為:32.【點睛】本題考查了正棱錐的結(jié)構(gòu)特征,考查了求正四棱錐的側(cè)面積,屬于基礎(chǔ)題.15、4【解析】函數(shù)f(x)(x∈R)滿足,∴f(x)的圖象關(guān)于點(1,0)對稱,而函數(shù)的圖象也關(guān)于點(1,0)對稱,∴函數(shù)與圖像的交點也關(guān)于點(1,0)對稱,∴,∴故答案為:4點睛:本題考查函數(shù)零點問題.函數(shù)零點問題有兩種解決方法,一個是利用二分法求解,另一個是化原函數(shù)為兩個函數(shù),利用兩個函數(shù)的交點來求解.本題要充分注意到兩個函數(shù)的共性:關(guān)于同一點中心對稱.16、【解析】,區(qū)間為.考點:函數(shù)的定義域三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)一元二次不等式的解法即可得出答案;(1)根據(jù)一元二次不等式的解法即可得出答案.【小問1詳解】解:不等式可化為,解得,所以不等式的解集為;【小問2詳解】解:不等式可化為,解得或,所以不等式的解集為.18、(1)A∪B={x|-2<x<3},;(2)(-∞,-2]【解析】(1)求解集合A,B根據(jù)集合交并補的定義求解即可;(2)由A∩B=A,得A?B,從而得,解不等式求解即可.試題解析:(1)由題得集合A={x|0<<1}={x|1<<3}當m=-1時,B={x|-2<x<2},則A∪B={x|-2<x<3}(2)由A∩B=A,得A?B..解得m≤-2,即實數(shù)m的取值范圍為(-∞,-2].19、(1)(2)【解析】(1)根據(jù)三角函數(shù)的定義結(jié)合二倍角的正弦公式、誘導公式化簡可得的值;(2)利用輔助角公式可得,結(jié)合角的取值范圍可求得的取值范圍.【小問1詳解】解:由三角函數(shù)的定義,可得,當時,,即,,【小問2詳解】解:,,,所以,,,則,則,即的取值范圍為.20、(1);(2)當生產(chǎn)的醫(yī)用防護服年產(chǎn)量為20萬件時,廠家所獲利潤最大,最大利潤為180萬元【解析】(1)根據(jù)題意,分、兩種情況可寫出答案;(2)利用二次函數(shù)和基本不等式的知識,分別求出、時的最大值,然后作比較可得答案.【詳解】(1)因為每件商品售價為25元,則萬件商品銷售收入為萬元,依題意得,當時,,當時,,所以;(2)當時,,此時,當時,取得最大值萬元,當時,萬元,此時,當且僅當,即時,取得最大值180萬元,因為,所以當生產(chǎn)的醫(yī)用防護服年產(chǎn)量為20萬件時,廠家所獲利潤最大,最大利潤為180萬元21、(1);(2)最大值,最小值為-1.【解析】(1)由圖可知,,可得,再將點代入得,結(jié)合,可得的值,即可求出函數(shù)的解析式;(2)根據(jù)函數(shù)的周期,可求時函數(shù)的最大值和最小值就是轉(zhuǎn)化為求函數(shù)在區(qū)間上的最大值和最小值,結(jié)合三角函數(shù)圖象,即可求出函數(shù)的最大值和最小值.試題解析:(1)由圖可知:,則∴,將點代入得,,∴,,即,∵∴∴函數(shù)的解析式為.(2)∵函數(shù)的周期是∴求時函數(shù)的最大值和最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論