版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省六安市省示范高中2025屆數(shù)學(xué)高二上期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直線過(guò)拋物線C的焦點(diǎn),且與C的對(duì)稱(chēng)軸垂直,與C交于A,B兩點(diǎn),P為C的準(zhǔn)線上一點(diǎn),若的面積為36,則等于()A.36 B.24C.12 D.62.直線被橢圓截得的弦長(zhǎng)是A. B.C. D.3.直線分別與軸,軸交于A,B兩點(diǎn),點(diǎn)在圓上,則面積的取值范圍是()A. B.C D.4.已知圓M的圓心在直線上,且點(diǎn),在M上,則M的方程為()A. B.C. D.5.在中國(guó),周朝時(shí)期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并證明此定理的為公元前世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他們用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和.若一個(gè)直角三角形的斜邊長(zhǎng)等于則這個(gè)直角三角形周長(zhǎng)的最大值為()A. B.C. D.6.已知兩個(gè)向量,,且,則的值為()A.1 B.2C.4 D.87.已知等差數(shù)列的前項(xiàng)和為,若,,則()A. B.C. D.8.已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),則的取值范圍是()A. B.C. D.9.已知實(shí)數(shù)x,y滿足約束條件,則的最大值為()A. B.0C.3 D.510.雙曲線的左焦點(diǎn)到其漸近線的距離是()A. B.C. D.11.過(guò)點(diǎn)且與橢圓有相同焦點(diǎn)的雙曲線方程為()A B.C. D.12.現(xiàn)要完成下列兩項(xiàng)調(diào)查:①?gòu)哪成鐓^(qū)70戶(hù)高收入家庭、335戶(hù)中等收入家庭、95戶(hù)低收入家庭中選出100戶(hù),調(diào)查社會(huì)購(gòu)買(mǎi)能力的某項(xiàng)指標(biāo);②從某中學(xué)的15名藝術(shù)特長(zhǎng)生中選出3名調(diào)查學(xué)習(xí)負(fù)擔(dān)情況.這兩項(xiàng)調(diào)查宜采用的抽樣方法是()A①簡(jiǎn)單隨機(jī)抽樣,②分層抽樣 B.①分層抽樣,②簡(jiǎn)單隨機(jī)抽樣C.①②都用簡(jiǎn)單隨機(jī)抽樣 D.①②都用分層抽樣二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的漸近線方程為,,分別為C的左,右焦點(diǎn),若動(dòng)點(diǎn)P在C的右支上,則的最小值是______14.在公差不為0的等差數(shù)列中,為其前n項(xiàng)和,若,則正整數(shù)______15.設(shè)拋物線C:的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為M,P是C上一點(diǎn),若|PF|=5,則|PM|=__.16.如圖,在正方體中,、分別是、的中點(diǎn),則異面直線與所成角的大小是____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在正方體中,E,F(xiàn)分別是,的中點(diǎn)(1)求證:∥平面;(2)求平面與平面EDC所成的二面角的正弦值18.(12分)已知幾何體中,平面平面,是邊長(zhǎng)為4的菱形,,是直角梯形,,,且(1)求證:;(2)求平面與平面所成角的余弦值19.(12分)如圖,在平面直角坐標(biāo)系中,點(diǎn),,(1)求直線BC的方程;(2)記的外接圓為圓M,若直線OC被圓M截得的弦長(zhǎng)為4,求點(diǎn)C的坐標(biāo)20.(12分)如圖,在長(zhǎng)方體中,,,,M為上一點(diǎn),且(1)求點(diǎn)到平面的距離;(2)求二面角的余弦值21.(12分)已知對(duì)于,函數(shù)有意義,關(guān)于k的不等式成立.(1)若為假命題,求k的取值范圍;(2)若p是q的必要不充分條件,求m的取值范圍.22.(10分)已知函數(shù).(1)設(shè)函數(shù),討論在區(qū)間上的單調(diào)性;(2)若存在兩個(gè)極值點(diǎn),()(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值),且,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】設(shè)拋物線方程為,根據(jù)題意由求解.【詳解】設(shè)拋物線方程為:,因?yàn)橹本€過(guò)拋物線C的焦點(diǎn),且與C的對(duì)稱(chēng)軸垂直,所以,又P為C的準(zhǔn)線上一點(diǎn),所以點(diǎn)P到直線AB的距離為p,所以,解得,所以,故選:C2、A【解析】直線y=x+1代入,得出關(guān)于x的二次方程,求出交點(diǎn)坐標(biāo),即可求出弦長(zhǎng)【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長(zhǎng)為故選A【點(diǎn)睛】本題查直線與橢圓的位置關(guān)系,考查弦長(zhǎng)的計(jì)算,屬于基礎(chǔ)題3、A【解析】把求面積轉(zhuǎn)化為求底邊和底邊上的高,高就是圓上點(diǎn)到直線的距離.【詳解】與x,y軸的交點(diǎn),分別為,,點(diǎn)在圓,即上,所以,圓心到直線的距離為,所以面積的最小值為,最大值為.故選:A4、C【解析】由題設(shè)寫(xiě)出的中垂線,求其與的交點(diǎn)即得圓心坐標(biāo),再應(yīng)用兩點(diǎn)距離公式求半徑,即可得圓的方程.【詳解】因?yàn)辄c(diǎn),在M上,所以圓心在的中垂線上由,解得,即圓心為,則半徑,所以M的方程為故選:C5、C【解析】設(shè)直角三角形的兩條直角邊邊長(zhǎng)分別為,則,根據(jù)基本不等式求出的最大值后,可得三角形周長(zhǎng)的最大值.【詳解】設(shè)直角三角形的兩條直角邊邊長(zhǎng)分別為,則.因?yàn)?,所以,所以,?dāng)且僅當(dāng)時(shí),等號(hào)成立.故這個(gè)直角三角形周長(zhǎng)的最大值為故選:C6、C【解析】由,可知,使,利用向量的數(shù)乘運(yùn)算及向量相等即可得解.【詳解】∵,∴,使,得,解得:,所以故選:C【點(diǎn)睛】思路點(diǎn)睛:在解決有關(guān)平行的問(wèn)題時(shí),通常需要引入?yún)?shù),如本題中已知,引入?yún)?shù),使,轉(zhuǎn)化為方程組求解;本題也可以利用坐標(biāo)成比例求解,即由,得,求出m,n.7、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項(xiàng)公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.8、B【解析】當(dāng)直線斜率存在時(shí),設(shè)直線方程,聯(lián)立方程組,結(jié)合根與系數(shù)關(guān)系可得,進(jìn)而求得取值范圍,當(dāng)斜率不存在是,可得,兩點(diǎn)坐標(biāo),進(jìn)而可得的值.【詳解】當(dāng)直線斜率存在時(shí),設(shè)直線方程為,,,聯(lián)立方程,得,恒成立,則,,,,,所以,當(dāng)直線斜率不存在時(shí),直線方程為,所以,,,綜上所述:,故選:B.9、D【解析】先畫(huà)出可行域,由,得,作出直線,向上平移過(guò)點(diǎn)A時(shí),取得最大值,求出點(diǎn)A的坐標(biāo),代入可求得結(jié)果【詳解】不等式組表示的可行域,如圖所示由,得,作出直線,向上平移過(guò)點(diǎn)A時(shí),取得最大值,由,得,即,所以的最大值為,故選:D10、A【解析】求出雙曲線焦點(diǎn)坐標(biāo)與漸近線方程,利用點(diǎn)到直線的距離公式可求得結(jié)果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點(diǎn)坐標(biāo)為,漸近線方程為,即,因,該雙曲線的左焦點(diǎn)到漸近線的距離為.故選:A11、D【解析】設(shè)雙曲線的方程為,再代點(diǎn)解方程即得解.【詳解】解:由得,所以橢圓的焦點(diǎn)為.設(shè)雙曲線的方程為,因?yàn)殡p曲線過(guò)點(diǎn),所以.所以雙曲線的方程為.故選:D12、B【解析】通過(guò)簡(jiǎn)單隨機(jī)抽樣和分層抽樣的定義辨析得到選項(xiàng)【詳解】在①中,由于購(gòu)買(mǎi)能力與收入有關(guān),應(yīng)該采用分層抽樣;在②中,由于個(gè)體沒(méi)有明顯差別,而且數(shù)目較少,應(yīng)該采用簡(jiǎn)單隨機(jī)抽樣故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】首先根據(jù)雙曲線的漸近線方程和焦點(diǎn)坐標(biāo),求出雙曲線的標(biāo)準(zhǔn)方程;設(shè),根據(jù)雙曲線的定義可知,從而利用基本不等式即可求出的最小值.【詳解】因?yàn)殡p曲線的漸近線方程為,焦點(diǎn)坐標(biāo)為,,所以,即,所以雙曲線方程為.設(shè),則,且,,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以的最小值是.故答案為:.14、13【解析】設(shè)等差數(shù)列公差為d,根據(jù)等差數(shù)列通項(xiàng)公式、前n項(xiàng)和公式及可求k.【詳解】設(shè)等差數(shù)列公差為d,∵,∴,即,即,∴.故答案為:13.15、【解析】根據(jù)拋物線的性質(zhì)及拋物線方程可求坐標(biāo),進(jìn)而得解.【詳解】由拋物線的方程可得焦點(diǎn),準(zhǔn)線,由題意可得,設(shè),有拋物線的性質(zhì)可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.16、【解析】分別以所在直線為軸,建立空間直角坐標(biāo)系,設(shè),則,,即異面直線A1M與DN所成角的大小是考點(diǎn):異面直線所成的角三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2).【解析】(1)連接,,連接,證明CE∥即可;(2)建立空間直角坐標(biāo)系,求出平面與平面EDC的法向量,利用向量法求二面角的正弦值.【小問(wèn)1詳解】如圖,連接,,連接,∵BC∥且BC=,∴四邊形是平行四邊形,∴∥且,∵E是中點(diǎn),G是中點(diǎn),∴∥CG且,∴四邊形是平行四邊形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小問(wèn)2詳解】如圖建立空間直角坐標(biāo)系,設(shè)正方體的棱長(zhǎng)為2,則,則,設(shè)平面的法向量為,則,?。辉O(shè)平面EDC的法向量為,則,取,則;設(shè)平面與平面EDC所成的二面角的平面角為α,則,∴18、(1)證明見(jiàn)解析;(2).【解析】(1)根據(jù)菱形的性質(zhì),結(jié)合面面垂直的性質(zhì)定理、線面垂直的判定定理和性質(zhì)進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,根據(jù)空間向量夾角公式進(jìn)行求解即可.【詳解】(1)證明:連接,交于點(diǎn),∵四邊形是菱形,∴,∵平面平面,平面平面,,∴平面,∵平面,∴,又,、平面,∴平面,∵平面,∴(2)解:取的中點(diǎn),連接,∵是邊長(zhǎng)為4的菱形,,∴,,以為原點(diǎn),,,所在直線分別為,,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,∴,,設(shè)平面的法向量為,則,即,令,則,,∴,同理可得,平面的一個(gè)法向量為,∴,由圖知,平面與平面所成角為銳角,故平面與平面所成角余弦值為19、(1);(2).【解析】(1)延長(zhǎng)CB交x軸于點(diǎn)N,根據(jù)給定條件求出即可計(jì)算作答.(2)利用待定系數(shù)法求出圓M的方程,再由給定弦長(zhǎng)確定C點(diǎn)位置,推理計(jì)算得解.【小問(wèn)1詳解】延長(zhǎng)CB交x軸于點(diǎn)N,如圖,因,則,又,則有,又,于是得,則直線BC的傾斜角為120°,直線BC的斜率,因此,,即所以直線BC的方程為.【小問(wèn)2詳解】依題意,設(shè)圓M的方程為,由(1)得:,解得,于是得圓M的方程為,即,圓心,半徑,因直線OC被圓M所截的弦長(zhǎng)為4,則直線OC過(guò)圓心,其方程為,由解得,即,所以點(diǎn)C的坐標(biāo)是.20、(1)(2)【解析】(1)以A為原點(diǎn),以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系,利用空間向量求解,(2)求出和的法向量,利用空間向量求解【小問(wèn)1詳解】以A為原點(diǎn),以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系由,,,,所以,,,因此,,,設(shè)平面的法向量,則,,所以,取,則,,于是,所以點(diǎn)到平面的距離【小問(wèn)2詳解】由,,設(shè)平面的法向量,則,,所以,取,則,,于是,由(1)知平面的法向量為,記二面角的平面角為,則,由圖可知二面角為銳角,所以所求二面角的余弦值為21、(1)(2)【解析】(1)由與的真假相反,得出為真命題,將定義域問(wèn)題轉(zhuǎn)化為不等式的恒成立問(wèn)題,討論參數(shù)的取值,得出答案;(2)由必要不充分條件的定義得出,討論的取值結(jié)合包含關(guān)系得出的范圍.【詳解】解:(1)因?yàn)闉榧倜},所以為真命題,所以對(duì)恒成立.當(dāng)時(shí),不符合題意;當(dāng)時(shí),則有,則.綜上,k的取值范圍為.(2)由,得.由(1)知,當(dāng)為真命題時(shí),則令令因?yàn)閜是q的必要不充分條件,所以當(dāng)時(shí),,,解得當(dāng)時(shí),,符合題意;當(dāng)時(shí),,符合題意;所以的取值范圍是【點(diǎn)睛】本題主要考查了不等式的恒成立問(wèn)題以及根據(jù)必要不充分條件求參數(shù)范圍,屬于中檔題.22、(1)答案見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)由題意得,然后對(duì)其求導(dǎo),再分,兩種情況討論導(dǎo)數(shù)的正負(fù),從而可求出函數(shù)的單調(diào)區(qū)間,(2)由(1)結(jié)合零點(diǎn)存在性定理可得在和上各有一個(gè)零點(diǎn),且是的兩個(gè)極值點(diǎn),再將極值點(diǎn)代入導(dǎo)函數(shù)中化簡(jiǎn)結(jié)合已知可得,,從而將要證的結(jié)論轉(zhuǎn)化為證,令,再次轉(zhuǎn)化為利用導(dǎo)數(shù)求的最小值大于零即可【小問(wèn)1詳解】由,得,則,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),令.當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.綜上,當(dāng)時(shí),的增區(qū)間為,無(wú)減區(qū)間當(dāng)時(shí),的增區(qū)間為,減區(qū)間為小問(wèn)2詳解】由(1)知若存在兩
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 機(jī)械原理課課程設(shè)計(jì)書(shū)
- 成都中醫(yī)藥大學(xué)《美國(guó)文學(xué)》2022-2023學(xué)年第一學(xué)期期末試卷
- 初中七年級(jí)主題班會(huì):如何處理人際沖突(課件)
- KF26777-free-base-生命科學(xué)試劑-MCE
- 深基坑工程施工組織設(shè)計(jì)方案
- 防暑防汛工作方案
- 戲劇院裝修合同樣本
- 簡(jiǎn)單日用品購(gòu)銷(xiāo)合同
- 內(nèi)河鋼鐵運(yùn)輸合同模板
- 地鐵站電氣系統(tǒng)改造合同
- 傳染病綜合防控講義課件
- 循環(huán)水系統(tǒng)加藥系統(tǒng)方案設(shè)計(jì)
- 化妝品通用檢測(cè)方法
- 《整理房間》(課堂PPT)
- 新員工三級(jí)安全教育教材(通用教材)
- 轉(zhuǎn)讓方及標(biāo)的企業(yè)基本情況(表一)
- 紅薯種植收購(gòu)合同協(xié)議書(shū)范本通用版
- 甲狀腺疾病PPT課件
- XXX公司發(fā)貨單
- 熱電聯(lián)產(chǎn)項(xiàng)目機(jī)組選型評(píng)估要點(diǎn)
- 大學(xué)英語(yǔ)5E教程第一冊(cè) Unit 1 Modern University 摩登大學(xué)
評(píng)論
0/150
提交評(píng)論