版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河南省洛陽名校高二數學第一學期期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列問題中是古典概型的是A.種下一粒楊樹種子,求其能長成大樹的概率B.擲一顆質地不均勻的骰子,求出現1點的概率C.在區(qū)間[1,4]上任取一數,求這個數大于1.5概率D.同時擲兩枚質地均勻的骰子,求向上的點數之和是5的概率2.已知橢圓的左焦點是,右焦點是,點P在橢圓上,如果線段的中點在y軸上,那么()A.3:5 B.3:4C.5:3 D.4:33.雙曲線:的一條漸近線與直線垂直,則它的離心率為()A. B.C. D.4.在中國古代,人們用圭表測量日影長度來確定節(jié)氣,一年之中日影最長一天被定為冬至.從冬至算起,依次有冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,其日影長依次成等差數列,若冬至、立春、春分日影長之和為31.5尺,小寒、雨水,清明日影長之和為28.5尺,則大寒、驚蟄、谷雨日影長之和為()A.25.5尺 B.34.5尺C.37.5尺 D.96尺5.某研究所為了研究近幾年中國留學生回國人數的情況,對2014至2018年留學生回國人數進行了統計,數據如下表:年份20142015201620172018年份代碼12345留學生回國人數/萬36.540.943.348.151.9根據上述統計數據求得留學生回國人數(單位:萬)與年份代碼滿足的線性回歸方程為,利用回歸方程預測年留學生回國人數為()A.63.14萬 B.64.72萬C.66.81萬 D.66.94萬6.如圖,在三棱錐中,是線段的中點,則()A. B.C. D.7.把直線繞原點逆時針轉動,使它與圓相切,則直線轉動的最小正角度A. B.C. D.8.若,則復數在復平面內對應的點在()A.曲線上 B.曲線上C.直線上 D.直線上9.過點且與雙曲線有相同漸近線的雙曲線方程為()A B.C. D.10.已知雙曲線方程為,過點的直線與雙曲線只有一個公共點,則符合題意的直線的條數共有()A.4條 B.3條C.2條 D.1條11.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.12.直線的一個法向量為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知正方體的棱長為6,E為棱的中點,F為棱上的點,且,則___________.14.的展開式中的系數為_________15.已知橢圓的左、右焦點分別為,,過點的直線與橢圓交于A,B兩點,線段AB的長為5,若,那么△的周長是______.16.已知圓和直線.(1)求直線l所經過的定點的坐標,并判斷直線與圓的位置關系;(2)求當k取什么值,直線被圓截得的弦最短,并求這條最短弦的長.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,使;不等式對一切恒成立.如果為真命題,為假命題,求實數的取值范圍.18.(12分)如圖,在四棱錐中,平面,底面為矩形,,,為的中點,.請用空間向量知識解答下列問題:(1)求線段的長;(2)若為線段上一點,且,求平面與平面夾角的余弦值.19.(12分)甲、乙兩人參加普法知識競賽,共有5題,選擇題(1)甲、乙兩人中有一個抽到選擇題(2)甲、乙兩人中至少有一人抽到選擇題20.(12分)已知在長方形ABCD中,AD=2AB=2,點E是AD的中點,沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求證:在四棱錐A-BCDE中,AB⊥AC.(2)在線段AC上是否存在點F,使二面角A-BE-F的余弦值為?若存在,找出點F的位置;若不存在,說明理由.21.(12分)如圖1是一張長方形鐵片,,,,分別是,中點,,分別在邊,上,且,將它卷成一個圓柱的側面圖2,使與重合,與重合.(1)求證:平面;(2)求幾何體的體積.22.(10分)如圖,在棱長為2的正方體中,,分別為線段,的中點.(1)求點到平面的距離;(2)求平面與平面夾角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】A、B兩項中的基本事件的發(fā)生不是等可能的;C項中基本事件的個數是無限多個;D項中基本事件的發(fā)生是等可能的,且是有限個.故選D【考點】古典概型的判斷2、A【解析】求出橢圓的焦點坐標,再根據點在橢圓上,線段的中點在軸上,求得點坐標,進而計算,從而求解.【詳解】由橢圓方程可得:,設點坐標為,線段的中點為,因為線段中點在軸上,所以,即,代入橢圓方程得或,不妨取,則,所以,故選:A.3、A【解析】先利用直線的斜率判定一條漸近線與直線垂直,求出,再利用雙曲線的離心率公式和進行求解.【詳解】因為直線的斜率為,所以雙曲線的一條漸近線與直線垂直,所以,即,則雙曲線的離心率.故選:A.卷II(非選擇題4、A【解析】由題意可知,十二個節(jié)氣其日影長依次成等差數列,設冬至日的日影長為尺,公差為尺,利用等差數列的通項公式,求出,即可求出,從而得到答案【詳解】設從冬至日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣其日影長依次成等差數列{},如冬至日的日影長為尺,設公差為尺.由題可知,所以,,,,故選:A5、D【解析】先求出樣本點的中心,代入線性回歸方程即可求出,再將代入線性回歸方程即可得到結果【詳解】由題意知:,,所以樣本點的中心為,所以,解得:,可得線性回歸方程為,年對應的年份代碼為,令,則,所以預測2022年留學生回國人數為66.94萬,故選:D.6、A【解析】根據給定幾何體利用空間向量基底結合向量運算計算作答.【詳解】在三棱錐中,是線段的中點,所以:.故選:A7、B【解析】根據直線過原點且與圓相切,求出直線的斜率,再數形結合計算最小旋轉角【詳解】解析:由題意,設切線為,∴.∴或.∴時轉動最小∴最小正角為.故選B.【點睛】本題考查直線與圓的位置關系,屬于基礎題8、B【解析】根據復數的除法運算,先化簡,進而求出,再由復數的幾何意義,即可得出結果.【詳解】因為,所以,因此復數在復平面內對應的點為,可知其在曲線上.故選:B9、C【解析】設與雙曲線有相同漸近線的雙曲線方程為,代入點的坐標,求出的值,即可的解.【詳解】設與雙曲線有相同漸近線的雙曲線方程為,代入點,得,解得,所以所求雙曲線方程為,即故選:C.10、A【解析】利用雙曲線漸近線的性質,結合一元二次方程根的判別式進行求解即可.【詳解】解:雙曲線的漸近線方程為,右頂點為.①直線與雙曲線只有一個公共點;②過點平行于漸近線時,直線與雙曲線只有一個公共點;③設過的切線方程為與雙曲線聯立,可得,由,即,解得,直線的條數為1.綜上可得,直線的條數為4.故選:A,.11、B【解析】利用空間向量加減、數乘的幾何意義,結合三棱錐用表示出即可.【詳解】由題設,,,,.故選:B12、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】建立空間直角坐標系,利用空間向量的數量積運算求解.【詳解】建立如圖所示空間直角坐標系:則,所以,所以,故答案為:1814、4【解析】將代數式變形為,寫出展開式的通項,令的指數為,求得參數的值,代入通項即可求解.【詳解】由展開式的通項為,令,得展開式中的系數為.由展開式的通項為,令,得展開式中的系數為.所以的展開式中的系數為.故答案為:.15、16【解析】利用橢圓的定義可知,又△的周長,即可求焦點三角形的周長.【詳解】由橢圓定義知:,所以△的周長為.故答案為:16.16、(1)直線過定點P(4,3),直線和圓總有兩個不同交點(2)k=1,【解析】(1)把直線方程化為點斜式方程即可;(2)由圓的性質知,當直線與PC垂直時,弦長最短.【小問1詳解】直線方程可化為,則直線過定點P(4,3),又圓C標準方程為,圓心為,半徑為,而,所以點P在圓內,所以不論k取何值,直線和圓總有兩個不同交點.【小問2詳解】由圓的性質知,當直線與PC垂直時,弦長最短.,所以k=1時弦長最短.弦長為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】若真命題,利用分離參數法結合指數函數性質,可得;若為真命題,利用分離參數法并結合基本不等式可得,再根據為真命題,為假命題,可知,一真命題一假命題;再分“為真命題,為假命題”和“為假命題,為真命題”兩種情況,求解范圍,即可得到結果.【詳解】解:若為真命題,則有解,所以,即;若為真命題,則對一切恒成立,令則,當且僅當,即時,取得最小值;所以,即;又為真命題,為假命題,所以,一真命題一假命題;當為真命題,為假命題時,,所以;當為假命題,為真命題時,,所以;綜上所述,.18、(1)(2)【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,由已知可得出,求出的值,即可得解;(2)利用空間向量法可求得平面與平面夾角的余弦值.【小問1詳解】解:平面,,以點為坐標原點,、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,設,則、、、,則,,,則,解得,故.【小問2詳解】解:,則,又、、,所以,,,設為平面的法向量,則,取,可得,顯然,為平面的一個法向量,,因此,平面與平面夾角的余弦值為.19、(1)(2)【解析】首先用列舉法,求得甲、乙兩人各抽一題的所有可能情況.(1)根據上述分析,分別求得“甲抽到判斷題,乙抽到選擇題(2)根據上述分析,求得“甲、乙兩人都抽到判斷題”的概率,根據對立事件概率計算公司求得“甲、乙兩人中至少有一人抽到選擇題【詳解】把3個選擇題因此基本事件的總數為.(1)記“甲抽到選擇題(2)記“甲、乙兩人至少有一人抽到選擇題【點睛】本小題主要考查互斥事件概率計算,考查對立事件,屬于基礎題.20、(1)證明見解析(2)點F為線段AC的中點【解析】(1)由平面幾何知識證得CE⊥BE,再根據面面垂直的性質,線面垂直的判定和性質可得證;(2)取BE的中點O,以O為原點,分別以的方向為x軸,y軸,z軸建立空間直角坐標系,假設在線段AC上存在點F,設=λ,運用二面角的向量求解方法可求得,可得點F的位置.【小問1詳解】證明:因為在長方形ABCD中,AD=2AB=2,點E是AD的中點,所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小問2詳解】解:存在點F,F為線段AC的中點.由(1)得△ABE和△BEC均為等腰直角三角形,取BE的中點O,則,又平面ABE⊥平面BCDE,面面,所以面,以O為原點,分別以的方向為x軸,y軸,z軸建立空間直角坐標系,如圖所示,取平面ABE的一個法向量為.假設在線段AC上存在點F,使二面角A-BE-F的余弦值為.則A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),設=λ,則+λ=(1-λ,2λ,1-λ),又=(2,0,0),設平面BEF的法向量為,可得,即得,可取y=1,得,所以,解得λ=,即當點F為線段AC的中點時,二面角A-BE-F的余弦值為.21、(1)證明見解析.(2).【解析】(1)根據線面垂直的性質和判定可得證;(2)作圓柱的母線,由平面幾何知識可得四邊形為平行四邊形,利用等體積法可求得,由幾何體的體積,可求得答案.【小問1詳解】證明:∵是直徑,∴,∵平面,平面,∴,∵平面,平面,,∴平面;【小問2詳解】如圖,作圓柱的母線,則,且,∴四邊形是平行四邊形,∴,且①又依題知,,,為底面圓的四等分點,∴,且②由①②知四邊形為平行四邊形,得,且,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專用設備的結構強度分析考核試卷
- 2025-2030全球汽車引擎蓋和后備箱釋放電纜行業(yè)調研及趨勢分析報告
- 2025年全球及中國受控環(huán)境室和房間行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國自主挖掘機行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 自然美術課程設計
- 認識地圖課程設計
- 老路改造課程設計
- 粘土三明治課程設計
- 課程設計等高線的確定
- 領導能力提升課程設計
- 2024年醫(yī)師定期考核臨床業(yè)務知識考試題庫及答案(共三套)
- 2014新PEP小學英語六年級上冊-Unit5-What-does-he-do復習課件
- 建筑材料供應鏈管理服務合同
- 孩子改名字父母一方委托書
- 2024-2025學年人教版初中物理九年級全一冊《電與磁》單元測試卷(原卷版)
- 江蘇單招英語考綱詞匯
- 2024年事業(yè)單位財務工作計劃例文(6篇)
- 2024年工程咨詢服務承諾書
- 青桔單車保險合同條例
- 車輛使用不過戶免責協議書范文范本
- 2023-2024學年天津市部分區(qū)九年級(上)期末物理試卷
評論
0/150
提交評論