會(huì)計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-4-Labs-SM_第1頁
會(huì)計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-4-Labs-SM_第2頁
會(huì)計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-4-Labs-SM_第3頁
會(huì)計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-4-Labs-SM_第4頁
會(huì)計(jì)數(shù)據(jù)分析 Solutions-Manual Chapter-4-Labs-SM_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Copyright?2019McGraw-HillEducation.Allrightsreserved.NoreproductionordistributionwithoutthepriorwrittenconsentofMcGraw-HillEducation.

CHAPTER4LABS

Lab4-1UsePivotChartstoVisualizeDeclarativeData

Lab4-2UseTableautoPerformExploratoryAnalysisandCreateDashboards

Lab4-3ComprehensiveLab:Dillard’sStoreData:CreateGeographicDataVisualizationsinTableau

Lab4-4ComprehensiveLab:Dillard’sStoreData:VisualizingRegressioninTableau

(Level1Header)Lab4-1UsePivotChartstoVisualizeDeclarativeData

TakeascreenshotthatshowsthePivotTableandthePivotChart(4-1A).

KeyScreenshot:

TakeascreenshotthatincludesyourPivotChart,PivotTable,andbothslicers(4-1B).

KeyScreenshot:

Q1.Spendafewminutesfilteringthedatawiththeslicers.Namethreeimportantinsightsthatwereeasytoidentifythroughthisvisualization.

Answerswillvary.

Q2.WhatdoesthedatavisualizationandtheinteractivityoftheslicerprovideyouraudiencethattheoriginalPivotTabledoesnot?

Answerswillvary,butstudentsmayidentifytheadvantageofthevisualizationhelpingtheaudienceidentifydifferencesinquantitysoldacrossproductsmorequickly,andtheslicershelptoquicklyfilterthedatatogatherinsights.

Alternative2:VisualizethePivotTablewithConditionalFormattingandSparklines

TakeascreenshottoshowtheConditionalFormattingandtheSparklines(4-1C).

Q3.Whendoyouthinkasparklineand/orconditionalformattingwouldbepreferableovercreatingaPivotChart?

Answerswillvary,butstudentsmayrespondthatsparklinesshowaquickersnapshotofhowaproductisperformingovertime,whilethePivotChartandslicersareamoreinteractivewaytodrillintothedata.

Q4.Whatothervisualizationswouldbeusefultointerpretthisdata?Ifyouweretocreateareporttoberunmonthly,whataretwovisualizationsthatshouldbeincluded?

Answerswillvary.

Q5.Provideawrittenreportdiscussingthedataanalysisprojectandtheinsightsthatshouldbegainedfromthisvisualization.

Answerswillvary.

Endoflab

(Level1Header)Lab4-2UseTableautoPerformExploratoryAnalysisandCreateDashboards

(Level2Header)Part1:IdentifytheQuestions

Q1.UsingtheUMLdiagram,identifywhichtable(s)andattributesyouwillneedtoansweryourinitialquestionregardingamountofproductssold.

Sales_Subset:Product_Code,Sales_Order_Quantity_Sold

CouldimprovetheoutputbyjoiningFGI_ProducttabletoviewProduct_Description(insteadofjustProduct_CodefromtheSales_Subsettable)

(Level2Header)Part2:MastertheData

Q2.IftheSalesOrderDatedatatypehadimportedasnumber,howmightthatcauseaproblemwithouranalysisifwewantedtodigintothedatabymonth,forexample?

Tableauiscapableofperformingsmartdateanalysis(similartoExcel).Whilemonthsanddaysarealignedwithnumbers,(months1-12,days1-28or30or31),importingthedataasadatetypeallowsyoutoperformweekly,monthly,andquarterlyanalysisthatwouldtakemanualgroupingifthedatatypewereonlyanumberinsteadofadate.

Q3.WhydidyourSalesOrderIDattributeimportastext,whenitlookslikeeachfieldhasnumericaldatainit?WouldtherebeanybenefitinSalesOrderIDbeingstoredasanumber?Whywillitnotpresentaprobleminouranalysistomaintainthisdataastext?

EventhoughthePrimaryKeyofSalesOrderIDisanumber,itdoesn’thaveanyquantitativeornumericalmeaning.It’snotmeaningfultoaddSalesOrder20001andSalesOrder20002.Itcanbemeaningfultocountthenumberofsalesordersonagivendayorduringaweek,butaddingoraveragetheactualnumbersassociatedwithSalesOrderIDisnotmeaningfulanalysis.Thisiswhyit’snotaproblemtopresentthisdatatypeastext.

(Level2Header)PerformExploratoryAnalysis

Takeascreenshot(4-2A).

KeyScreenshot:

Q4.Whataretwowaysthatyoucanthinktoimprovethisvisualtomakeitmoreeasilyunderstandable?

Answerswillvary,butthenexttwostepsaregreatwaystoimprovethevisual–tosortthebarsbyamountofproductsold,descending,andalsotoaddlabelstoeachofthebars.

Takeascreenshot(4-2B).

KeyScreenshot:

Takeascreenshot(4-2C).

KeyScreenshot:

Takeascreenshot(4-2D).

KeyScreenshot:

(Level2Header)CommunicateResults

Filterbyeitherastateoraproduct,andtakeascreenshot(4-2E).

KeyScreenshot(Answerswillvary,dependingonwhichitemsthestudentusestofilter):

Q5.Aftercreatingthesesheetsandthedashboard,whatadditionaldatawouldyourecommendthatSlainteanalyze?WhatisanotherdatavisualizationthatwouldbehelpfulforSlainte’sdecision-making?

Answerswillvary.

EndofLab

Lab4-3ComprehensiveLab:Dillard’sStoreData:CreateGeographicDataVisualizationsinTableau

(Level2Header)Part1:IdentifytheQuestions

Q1. Howwouldthisinformation,averagetransactionbalancebystate,helpamanagermakedecisions?

Answerswillvary.Managerscanusethisinformationtocomparetheperformanceacrossstates,andiftheyrecognizethattheyareinalower-averagetransactionstate,theymaylooktothehigher-averagetransactionstatestoseewhatisbeingdonedifferently.

Q2. Howwouldyouthinkmanagerswouldliketovisualizetransactionbalancebystate?Whatwouldbethemost(andless)effectivewaystovisualizethesetransactions?

Answerswillvary.PiechartswouldbeapoorwaytovisualizethisdatabecausetherearesomanystatesthathaveDillard’sstores,therewouldbetoomanypiecesofpieforittobemeaningful.Barcharts(histograms)wouldworkwell,aswouldmaps.

(Level2Header)Part2:MastertheData

TAKEASCREENSHOTOFYOURRESULTS(4-3A)

KeyScreenshot:

Endofthisprocess

(Level2Header)Part3:Performananalysisofthedata

Q4.WhichCityhasthehighestaveragetransactionamount?(Itcanbeeasiertoanswerthisquestionifyousortthedata.Clickingthe“sort”buttonwillre-orderthebarssothatthecitywiththehighestaveragetransactionamountwillbethefirstbarlisted).

Maumelle

Q5. Howwouldyouthinkmanagerswouldliketoseetransactionbalancebystate?

Answerswillvary.Managersmayliketoseeadrillabletransactionbalancesotheycanidentifyhighandlowperformersacrosscitiesandstores.

Q6.Whatarefurtherquestionsthatwouldbemeaningfultodrilldownintowiththissamedataset,givenwhatyouhaveseensofar?

Answerswillvary.

TAKEASCREENSHOTOFYOURRESULTS(4-3B)

KeyScreenshot(Answersmayvaryifstudentssortedorcollapsedtheirdata):

(Level2Header)Part4:AddressandRefineResults

WiththismuchdataloadedintoTableau,thereisatremendousamountofanalysisandvisualizationthatyoucando.

Q6.BasedonwhatyouhaveseenoftheaveragetransactionamountsfordifferentdepartmentsandproductsintheMaumellestore,whatwouldyourecommendtotheMaumellestoremanagerwhoistryingtomaximizeprofits?Advertisecertainproductsmore?Advertisecertainproductsless?Openanadditionalstorenearby?Closethisstore,etc.?

Answerswillvary.Thestudentsshoulddrillintoparticularlyhighandlowperformingdepartmentstofindtheiranswers.

Lab4-4ComprehensiveLab:Dillard’sStoreData:VisualizingRegressioninTableau

(Level2Header)Part4:AddressandRefineResults

Q1.Whichofthesethreevariableshaveanoticeabletrendascomparedtotheothers,suggestinggreaterexplanatorypower?

TheOnlinevariable

Q2.Whichofthesethreevariablesdoesthebestatexplainingtheaveragetransactionamount?(Hint:Considerther-squaredineachorthep-valuesamongthethreemodels).

Theonlinevariable

Q3.ThecoefficientontheDLRD-dummyisnegativehere.Whatdoesthatsuggest?Isthatconsisten

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論