潛江市重點中學2023-2024學年中考數(shù)學模擬預測題含解析_第1頁
潛江市重點中學2023-2024學年中考數(shù)學模擬預測題含解析_第2頁
潛江市重點中學2023-2024學年中考數(shù)學模擬預測題含解析_第3頁
潛江市重點中學2023-2024學年中考數(shù)學模擬預測題含解析_第4頁
潛江市重點中學2023-2024學年中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

潛江市重點中學2023-2024學年中考數(shù)學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A. B. C. D.2.某種超薄氣球表面的厚度約為,這個數(shù)用科學記數(shù)法表示為()A. B. C. D.3.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對4.不等式組的正整數(shù)解的個數(shù)是()A.5 B.4 C.3 D.25.下列判斷正確的是()A.任意擲一枚質地均勻的硬幣10次,一定有5次正面向上B.天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.“a是實數(shù),|a|≥0”是不可能事件6.如圖,正六邊形ABCDEF內(nèi)接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.17.如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點.設AC=2,BD=1,AP=x,△AMN的面積為y,則y關于x的函數(shù)圖象大致形狀是()A. B. C. D.8.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形9.某青年排球隊12名隊員年齡情況如下:年齡1819202122人數(shù)14322則這12名隊員年齡的眾數(shù)、中位數(shù)分別是()A.20,19 B.19,19 C.19,20.5 D.19,2010.小明在學習了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使?ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認為其中錯誤的是()A.①② B.②③ C.①③ D.②④二、填空題(共7小題,每小題3分,滿分21分)11.如圖,點O是矩形紙片ABCD的對稱中心,E是BC上一點,將紙片沿AE折疊后,點B恰好與點O重合.若BE=3,則折痕AE的長為____.12.已知x1,x2是方程x2-3x-1=0的兩根,則=______.13.如圖,在平面直角坐標系xOy中,點A的坐標為A(1,0),等腰直角三角形ABC的邊AB在x軸的正半軸上,∠ABC=90°,點B在點A的右側,點C在第一象限。將△ABC繞點A逆時針旋轉75°,如果點C的對應點E恰好落在y軸的正半軸上,那么邊AB的長為____.14.分解因式:_________.15.如圖,在平面直角坐標系中,△的頂點、在坐標軸上,點的坐標是(2,2).將△ABC沿軸向左平移得到△A1B1C1,點落在函數(shù)y=-.如果此時四邊形的面積等于,那么點的坐標是________.16.假期里小菲和小琳結伴去超市買水果,三次購買的草莓價格和數(shù)量如下表:價格/(元/kg)

12

10

8

合計/kg

小菲購買的數(shù)量/kg

2

2

2

6

小琳購買的數(shù)量/kg

1

2

3

6

從平均價格看,誰買得比較劃算?()A.一樣劃算B.小菲劃算C.小琳劃算D.無法比較17.若點A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函數(shù)y=(k為常數(shù))的圖象上,則y1、y2、y3的大小關系為________.三、解答題(共7小題,滿分69分)18.(10分)如圖,矩形ABCD繞點C順時針旋轉90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;(1)求證:AM=FM;(2)若∠AMD=a.求證:=cosα.19.(5分)某商店準備購進甲、乙兩種商品.已知甲商品每件進價15元,售價20元;乙商品每件進價35元,售價45元.(1)若該商店同時購進甲、乙兩種商品共100件,恰好用去2700元,求購進甲、乙兩種商品各多少件?(2)若該商店準備用不超過3100元購進甲、乙兩種商品共100件,且這兩種商品全部售出后獲利不少于890元,問應該怎樣進貨,才能使總利潤最大,最大利潤是多少?(利潤=售價﹣進價)20.(8分)如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=nx(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx21.(10分)目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學小組在校內(nèi)對“你最認可的四大新生事物”進行調(diào)查,隨機調(diào)查了m人(每名學生必選一種且只能從這四種中選擇一種)并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.根據(jù)圖中信息求出m=,n=;請你幫助他們將這兩個統(tǒng)計圖補全;根據(jù)抽樣調(diào)查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?已知A、B兩位同學都最認可“微信”,C同學最認可“支付寶”D同學最認可“網(wǎng)購”從這四名同學中抽取兩名同學,請你通過樹狀圖或表格,求出這兩位同學最認可的新生事物不一樣的概率.22.(10分)某校檢測學生跳繩水平,抽樣調(diào)查了部分學生的“1分鐘跳繩”成績,并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖(1)D組的人數(shù)是人,補全頻數(shù)分布直方圖,扇形圖中m=;(2)本次調(diào)查數(shù)據(jù)中的中位數(shù)落在組;(3)如果“1分鐘跳繩”成績大于或等于120次為優(yōu)秀,那么該校4500名學生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人?23.(12分)如圖所示,某工程隊準備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為37°,塔底B的仰角為26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,圖中的點O、B、C、A、P在同一平面內(nèi),求山坡的坡度.(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)24.(14分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.從中任意摸出1個球,恰好摸到紅球的概率是;先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

原式各項計算得到結果,即可做出判斷.【詳解】A、原式=,正確;

B、原式不能合并,錯誤;

C、原式=,錯誤;

D、原式=2,錯誤.

故選A.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.2、A【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】,故選:A.【點睛】本題考查了用科學記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.3、B【解析】

解方程得:x=5或x=1.當x=1時,3+4=1,不能組成三角形;當x=5時,3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.4、C【解析】

先解不等式組得到-1<x≤3,再找出此范圍內(nèi)的正整數(shù).【詳解】解不等式1-2x<3,得:x>-1,

解不等式≤2,得:x≤3,

則不等式組的解集為-1<x≤3,

所以不等式組的正整數(shù)解有1、2、3這3個,

故選C.【點睛】本題考查了一元一次不等式組的整數(shù)解,解題的關鍵是正確得出一元一次不等式組的解集.5、C【解析】

直接利用概率的意義以及隨機事件的定義分別分析得出答案.【詳解】A、任意擲一枚質地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“a是實數(shù),|a|≥0”是必然事件,故此選項錯誤.故選C.【點睛】此題主要考查了概率的意義以及隨機事件的定義,正確把握相關定義是解題關鍵.6、A【解析】

連接OM、OD、OF,由正六邊形的性質和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數(shù)求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內(nèi)接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點睛】本題考查了正多邊形和圓、正六邊形的性質、三角函數(shù)、勾股定理;熟練掌握正六邊形的性質,由三角函數(shù)求出OM是解決問題的關鍵.7、C【解析】△AMN的面積=AP×MN,通過題干已知條件,用x分別表示出AP、MN,根據(jù)所得的函數(shù),利用其圖象,可分兩種情況解答:(1)0<x≤1;(2)1<x<2;解:(1)當0<x≤1時,如圖,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函數(shù)圖象開口向上;(2)當1<x<2,如圖,同理證得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函數(shù)圖象開口向下;綜上答案C的圖象大致符合.故選C.本題考查了二次函數(shù)的圖象,考查了學生從圖象中讀取信息的數(shù)形結合能力,體現(xiàn)了分類討論的思想.8、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念結合矩形、平行四邊形、直角梯形、正五邊形的性質求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖形重合.9、D【解析】

先計算出這個隊共有1+4+3+2+2=12人,然后根據(jù)眾數(shù)與中位數(shù)的定義求解.【詳解】這個隊共有1+4+3+2+2=12人,這個隊隊員年齡的眾數(shù)為19,中位數(shù)為=1.故選D.【點睛】本題考查了眾數(shù):在一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)叫這組數(shù)據(jù)的眾數(shù).也考查了中位數(shù)的定義.10、B【解析】

A、∵四邊形ABCD是平行四邊形,當①AB=BC時,平行四邊形ABCD是菱形,當②∠ABC=90°時,菱形ABCD是正方形,故此選項正確,不合題意;B、∵四邊形ABCD是平行四邊形,∴當②∠ABC=90°時,平行四邊形ABCD是矩形,當AC=BD時,這是矩形的性質,無法得出四邊形ABCD是正方形,故此選項錯誤,符合題意;C、∵四邊形ABCD是平行四邊形,當①AB=BC時,平行四邊形ABCD是菱形,當③AC=BD時,菱形ABCD是正方形,故此選項正確,不合題意;D、∵四邊形ABCD是平行四邊形,∴當②∠ABC=90°時,平行四邊形ABCD是矩形,當④AC⊥BD時,矩形ABCD是正方形,故此選項正確,不合題意.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、6【解析】試題分析:由題意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,設AB=AO=OC=x,則有AC=2x,∠ACB=30°,在Rt△ABC中,根據(jù)勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,則AE=6故答案為6.12、﹣1.【解析】試題解析:∵,是方程的兩根,∴、,∴===﹣1.故答案為﹣1.13、【解析】

依據(jù)旋轉的性質,即可得到,再根據(jù),,即可得出,.最后在中,可得到.【詳解】依題可知,,,,∴,在中,,,,,.∴在中,.故答案為:.【點睛】本題考查了坐標與圖形變化,等腰直角三角形的性質以及含30°角的直角三角形的綜合運用,圖形或點旋轉之后要結合旋轉的角度和圖形的特殊性質來求出旋轉后的點的坐標.14、【解析】先提取公因式b,再利用完全平方公式進行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)15、(-5,)【解析】分析:依據(jù)點B的坐標是(2,2),BB2∥AA2,可得點B2的縱坐標為2,再根據(jù)點B2落在函數(shù)y=﹣的圖象上,即可得到BB2=AA2=5=CC2,依據(jù)四邊形AA2C2C的面積等于,可得OC=,進而得到點C2的坐標是(﹣5,).詳解:如圖,∵點B的坐標是(2,2),BB2∥AA2,∴點B2的縱坐標為2.又∵點B2落在函數(shù)y=﹣的圖象上,∴當y=2時,x=﹣3,∴BB2=AA2=5=CC2.又∵四邊形AA2C2C的面積等于,∴AA2×OC=,∴OC=,∴點C2的坐標是(﹣5,).故答案為(﹣5,).點睛:本題主要考查了反比例函數(shù)的綜合題的知識,解答本題的關鍵是熟練掌握反比例函數(shù)的性質以及平移的性質.在平面直角坐標系內(nèi),把一個圖形各個點的橫坐標都加上(或減去)一個整數(shù)a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度.16、C【解析】試題分析:根據(jù)題意分別求出兩人的平均價格,然后進行比較.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,則小琳劃算.考點:平均數(shù)的計算.17、y2<y1<y2【解析】分析:設t=k2﹣2k+2,配方后可得出t>1,利用反比例函數(shù)圖象上點的坐標特征可求出y1、y2、y2的值,比較后即可得出結論.詳解:設t=k2﹣2k+2,∵k2﹣2k+2=(k﹣1)2+2>1,∴t>1.∵點A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函數(shù)y=(k為常數(shù))的圖象上,∴y1=﹣,y2=﹣t,y2=t,又∵﹣t<﹣<t,∴y2<y1<y2.故答案為:y2<y1<y2.點睛:本題考查了反比例函數(shù)圖象上點的坐標特征,利用反比例函數(shù)圖象上點的坐標特征求出y1、y2、y2的值是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)見解析.【解析】

(1)由旋轉性質可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,則HF=FG=AD,所以可證△ADM≌△MHF,結論可得.(2)作FN⊥DG垂足為N,且MF=FG,可得HN=GN,且DM=MH,可證2MN=DG,由第一問可得2MF=AF,由cosα=cos∠FMG=,代入可證結論成立【詳解】(1)由旋轉性質可知:CD=CG且∠DCG=90°,∴∠DGC=45°從而∠DGF=45°,∵∠EFG=90°,∴HF=FG=AD又由旋轉可知,AD∥EF,∴∠DAM=∠HFM,又∵∠DMA=∠HMF,∴△ADM≌△FHM∴AM=FM(2)作FN⊥DG垂足為N∵△ADM≌△MFH∴DM=MH,AM=MF=AF∵FH=FG,F(xiàn)N⊥HG∴HN=NG∵DG=DM+HM+HN+NG=2(MH+HN)∴MN=DG∵cos∠FMG=∴cos∠AMD=∴=cosα【點睛】本題考查旋轉的性質,矩形的性質,全等三角形的判定,三角函數(shù),關鍵是構造直角三角形.19、(1)商店購進甲種商品40件,購進乙種商品60件;(2)應購進甲種商品20件,乙種商品80件,才能使總利潤最大,最大利潤為900元.【解析】

(1)設購進甲、乙兩種商品分別為x件與y件,根據(jù)甲種商品件數(shù)+乙種商品件數(shù)=100,甲商品的總進價+乙種商品的總進價=2700,列出關于x與y的方程組,求出方程組的解即可得到x與y的值,得到購進甲、乙兩種商品的件數(shù);(2)設商店購進甲種商品a件,則購進乙種商品(100-a)件,根據(jù)甲商品的總進價+乙種商品的總進價小于等于3100,甲商品的總利潤+乙商品的總利潤大于等于890列出關于a的不等式組,求出不等式組的解集,得到a的取值范圍,根據(jù)a為正整數(shù)得出a的值,再表示總利潤W,發(fā)現(xiàn)W與a成一次函數(shù)關系式,且為減函數(shù),故a取最小值時,W最大,即可求出所求的進貨方案與最大利潤.【詳解】(1)設購進甲種商品x件,購進乙商品y件,根據(jù)題意得:,解得:,答:商店購進甲種商品40件,購進乙種商品60件;(2)設商店購進甲種商品a件,則購進乙種商品(100﹣a)件,根據(jù)題意列得:,解得:20≤a≤22,∵總利潤W=5a+10(100﹣a)=﹣5a+1000,W是關于a的一次函數(shù),W隨a的增大而減小,∴當a=20時,W有最大值,此時W=900,且100﹣20=80,答:應購進甲種商品20件,乙種商品80件,才能使總利潤最大,最大利潤為900元.【點睛】此題考查了二元一次方程組的應用,一次函數(shù)的性質,以及一元一次不等式組的應用,弄清題中的等量關系及不等關系是解本題的關鍵.20、(1)y=﹣2x+1;y=﹣80x【解析】

(1)根據(jù)OA、OB的長寫出A、B兩點的坐標,再用待定系數(shù)法求解一次函數(shù)的解析式,然后求得點C的坐標,進而求出反比例函數(shù)的解析式.(2)聯(lián)立方程組求解出交點坐標即可.(3)觀察函數(shù)圖象,當函數(shù)y=kx+b的圖像處于y=nx下方或與其有重合點時,x的取值范圍即為【詳解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x軸,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴點C坐標為(﹣4,20),∴n=xy=﹣80.∴反比例函數(shù)解析式為:y=﹣,把點A(6,0),B(0,1)代入y=kx+b得:,解得:.∴一次函數(shù)解析式為:y=﹣2x+1,(2)當﹣=﹣2x+1時,解得,x1=10,x2=﹣4,當x=10時,y=﹣8,∴點E坐標為(10,﹣8),∴S△CDE=S△CDA+S△EDA=.(3)不等式kx+b≤,從函數(shù)圖象上看,表示一次函數(shù)圖象不低于反比例函數(shù)圖象,∴由圖象得,x≥10,或﹣4≤x<0.【點睛】本題考查了應用待定系數(shù)法求一次函數(shù)和反比例函數(shù)解析式以及用函數(shù)的觀點通過函數(shù)圖像解不等式.21、(1)100、35;(2)補圖見解析;(3)800人;(4)【解析】分析:(1)由共享單車人數(shù)及其百分比求得總人數(shù)m,用支付寶人數(shù)除以總人數(shù)可得其百分比n的值;(2)總人數(shù)乘以網(wǎng)購人數(shù)的百分比可得其人數(shù),用微信人數(shù)除以總人數(shù)求得其百分比即可補全兩個圖形;(3)總人數(shù)乘以樣本中微信人數(shù)所占百分比可得答案;(4)列表得出所有等可能結果,從中找到這兩位同學最認可的新生事物不一樣的結果數(shù),根據(jù)概率公式計算可得.詳解:(1)∵被調(diào)查的總人數(shù)m=10÷10%=100人,∴支付寶的人數(shù)所占百分比n%=×100%=35%,即n=35,(2)網(wǎng)購人數(shù)為100×15%=15人,微信對應的百分比為×100%=40%,補全圖形如下:(3)估算全校2000名學生中,最認可“微信”這一新生事物的人數(shù)為2000×40%=800人;(4)列表如下:共有12種情況,這兩位同學最認可的新生事物不一樣的有10種,所以這兩位同學最認可的新生事物不一樣的概率為.點睛:本題考查的是用列表法或畫樹狀圖法求概率以及扇形統(tǒng)計圖與條形統(tǒng)計圖的知識.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)16、84°;(2)C;(3)該校4500名學生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有3000(人)【解析】

(1)根據(jù)百分比=所長人數(shù)÷總人數(shù),圓心角=百分比,計算即可;(2)根據(jù)中位數(shù)的定義計算即可;(3)用一半估計總體的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論