版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆江蘇省徐州市第五中學(xué)高二上數(shù)學(xué)期末質(zhì)量檢測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,用3種不同的顏色涂入圖中的矩形A,B,C中,要求相鄰的矩形不能使用同一種顏色,則不同的涂法有()ABCA.3種 B.6種C.12種 D.27種2.有下列四個(gè)命題,其中真命題是()A., B.,,C.,, D.,3.已知等差數(shù)列滿足,,數(shù)列滿足,記數(shù)列的前n項(xiàng)和為,若對(duì)于任意的,,不等式恒成立,則實(shí)數(shù)t的取值范圍為()A. B.C. D.4.已知?jiǎng)t是的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.在等差數(shù)列中,,且,,,構(gòu)成等比數(shù)列,則公差()A.0或2 B.2C.0 D.0或6.已知等差數(shù)列,若,,則()A.1 B.C. D.37.已知直線l1:mx-2y+1=0,l2:x-(m-1)y-1=0,則“m=2”是“l(fā)1平行于l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件8.已知數(shù)列為遞增等比數(shù)列,,則數(shù)列的前2019項(xiàng)和()A. B.C. D.9.已知點(diǎn),則直線的傾斜角為()A. B.C. D.10.已知數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,是以1為首項(xiàng),2為公比的等比數(shù)列,設(shè),,則當(dāng)時(shí),n的最大值是()A.8 B.9C.10 D.1111.若方程表示焦點(diǎn)在y軸上的雙曲線,則k的取值范圍是()A. B.C. D.12.設(shè)為數(shù)列的前n項(xiàng)和,,且滿足,若,則()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)M(0,2)的距離與點(diǎn)P到該拋物線準(zhǔn)線的距離之和的最小值為______________14.已知A,B為x,y正半軸上的動(dòng)點(diǎn),且,O為坐標(biāo)原點(diǎn),現(xiàn)以為邊長(zhǎng)在第一象限做正方形,則的最大值為___________.15.已知等比數(shù)列滿足,則_________16.在區(qū)間上隨機(jī)取1個(gè)數(shù),則取到的數(shù)小于2的概率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓.(1)求過點(diǎn)M(2,1)的圓的切線方程;(2)直線過點(diǎn)且被圓截得的弦長(zhǎng)為2,求直線的方程;(3)已知圓的圓心在直線y=1上,與y軸相切,且與圓相外切,求圓的標(biāo)準(zhǔn)方程.18.(12分)已知數(shù)列中,,___________,其中.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求證:數(shù)列是等比數(shù)列;(3)求數(shù)列的前n項(xiàng)和.從①前n項(xiàng)和,②,③且,這三個(gè)條件中任選一個(gè),補(bǔ)充在上面的問題中并作答.19.(12分)已知等差數(shù)列滿足:,(1)求數(shù)列的通項(xiàng)公式,以及前n項(xiàng)和公式;(2)若,求數(shù)列的前n項(xiàng)和20.(12分)設(shè)等差數(shù)列的前項(xiàng)和為,已知,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.21.(12分)設(shè)數(shù)列是公比為q的等比數(shù)列,其前n項(xiàng)和為(1)若,,求數(shù)列的前n項(xiàng)和;(2)若,,成等差數(shù)列,求q的值并證明:存在互不相同的正整數(shù)m,n,p,使得,,成等差數(shù)列;(3)若存在正整數(shù),使得數(shù)列,,…,在刪去以后按原來的順序所得到的數(shù)列是等差數(shù)列,求所有數(shù)對(duì)所構(gòu)成的集合,22.(10分)在平面直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)曲線與直線交于,兩點(diǎn),求線段的中點(diǎn)的直角坐標(biāo)及的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)給定信息,按用色多少分成兩類,再分類計(jì)算作答.【詳解】計(jì)算不同的涂色方法數(shù)有兩類辦法:用3種顏色,每個(gè)矩形涂一種顏色,有種方法,用2色,矩形A,C涂同色,有種方法,由分類加法計(jì)數(shù)原理得(種),所以不同的涂法有12種.故選:C2、B【解析】對(duì)于選項(xiàng)A,令即可驗(yàn)證其不正確;對(duì)于選項(xiàng)C、選項(xiàng)D,令,即可驗(yàn)證其均不正確,進(jìn)而可得出結(jié)果.【詳解】對(duì)于選項(xiàng)A,令,則,故A錯(cuò);對(duì)于選項(xiàng)B,令,則,顯然成立,故B正確;對(duì)于選項(xiàng)C,令,則顯然無解,故C錯(cuò);對(duì)于選項(xiàng)D,令,則顯然不成立,故D錯(cuò).故選B【點(diǎn)睛】本題主要考查命題真假的判定,用特殊值法驗(yàn)證即可,屬于??碱}型.3、B【解析】由等差數(shù)列基本量法求出通項(xiàng)公式,用裂項(xiàng)相消法求得,求出的最大值,然后利用關(guān)于的不等式是一次不等式列出滿足的不等關(guān)系求得其范圍【詳解】設(shè)等差數(shù)列公差為,則由已知得,解得,∴,,∴,易知數(shù)列是遞增數(shù)列,且,∴若對(duì)于任意的,,不等式恒成立,即,又,∴,解得或故選:B【點(diǎn)睛】本題考查求等差數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求數(shù)列的和,考查不等式恒成立問題,解題關(guān)鍵是掌握不等式恒成立問題的轉(zhuǎn)化與化歸思想,不等式恒成立首先轉(zhuǎn)化為求數(shù)列的單調(diào)性與最值,其次轉(zhuǎn)化為一次不等式恒成立4、A【解析】先解不等式,再比較集合包含關(guān)系確定選項(xiàng).【詳解】因?yàn)?,所以是的充分不必要條件,選A.【點(diǎn)睛】本題考查解含絕對(duì)值不等式、解一元二次不等式以及充要關(guān)系判定,考查基本分析求解能力,屬基礎(chǔ)題.5、A【解析】根據(jù)等比中項(xiàng)的性質(zhì)和等差數(shù)列的通項(xiàng)公式建立方程,可解得公差d得選項(xiàng).【詳解】解:因?yàn)樵诘炔顢?shù)列中,,且,,,構(gòu)成等比數(shù)列,所以,即,所以,解得或,故選:A.6、C【解析】利用等差數(shù)列的通項(xiàng)公式進(jìn)行求解.【詳解】設(shè)等差數(shù)列的公差為,因?yàn)?,,所以,解?故選:C.7、C【解析】利用兩直線平行的等價(jià)條件求得m,再結(jié)合充分必要條件進(jìn)行判斷即可.【詳解】由直線l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,經(jīng)驗(yàn)證,當(dāng)m=-1時(shí),直線l1與l2重合,舍去,所以“m=2”是“l(fā)1平行于l2”的充要條件,故選C.【點(diǎn)睛】本題考查兩直線平行的條件,準(zhǔn)確計(jì)算是關(guān)鍵,注意充分必要條件的判斷是基礎(chǔ)題8、C【解析】根據(jù)數(shù)列為遞增的等比數(shù)列,,利用“”法求得,再代入等比數(shù)列的前n項(xiàng)和公式求解.【詳解】因?yàn)閿?shù)列為遞增等比數(shù)列,所以,解得:,所以.故選:C【點(diǎn)睛】本題主要考查等比數(shù)列的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.9、A【解析】由兩點(diǎn)坐標(biāo),求出直線的斜率,利用,結(jié)合傾斜角的范圍即可求解.【詳解】設(shè)直線AB的傾斜角為,因?yàn)?,所以直線AB的斜率,即,因?yàn)?,所?故選:A10、B【解析】先求出數(shù)列和的通項(xiàng)公式,然后利用分組求和求出,再對(duì)進(jìn)行賦值即可求解.【詳解】解:因?yàn)閿?shù)列是以1為首項(xiàng),2為公差的等差數(shù)列所以因?yàn)槭且?為首項(xiàng),2為公比的等比數(shù)列所以由得:當(dāng)時(shí),即當(dāng)時(shí),當(dāng)時(shí),所以n的最大值是.故選:B.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題的關(guān)鍵是利用分組求和求出,再通過賦值法即可求出使不等式成立的的最大值.11、B【解析】由條件可得,即可得到答案.【詳解】方程表示焦點(diǎn)在y軸上的雙曲線所以,即故選:B12、B【解析】由已知條件可得數(shù)列為首項(xiàng)為2,公差為2的等差數(shù)列,然后根據(jù)結(jié)合等差數(shù)列的求和公式可求得答案【詳解】在等式中,令,可得,所以數(shù)列為首項(xiàng)為2,公差為2的等差數(shù)列,因?yàn)?,所以,化?jiǎn)得,,解得或(舍去),故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線的定義得:,所以,當(dāng)三點(diǎn)共線時(shí),最小可得答案.【詳解】如圖所示:,由拋物線的定義得:,所以,由圖象知:當(dāng)三點(diǎn)共線時(shí),最小,.故答案為:.14、32【解析】建立平面直角坐標(biāo)系,設(shè)出角度和邊長(zhǎng),表達(dá)出點(diǎn)坐標(biāo),進(jìn)而表達(dá)出,利用三角函數(shù)換元,求出最大值.【詳解】如圖,過點(diǎn)D作DE⊥x軸于點(diǎn)E,過點(diǎn)C作CF⊥y軸于點(diǎn)F,設(shè),(),則由三角形全等可知,設(shè),,則,則,,則,令,,則,當(dāng)時(shí),取得最大值,最大值為32故答案為:3215、84【解析】設(shè)公比為q,求出,再由通項(xiàng)公式代入可得結(jié)論【詳解】設(shè)公比為q,則,解得所以故答案為:8416、【解析】根據(jù)幾何概型計(jì)算公式進(jìn)行求解即可.【詳解】設(shè)“區(qū)間上隨機(jī)取1個(gè)數(shù)”,對(duì)應(yīng)集合為,區(qū)間長(zhǎng)度為3,“取到的數(shù)小于2”,對(duì)應(yīng)集合為,區(qū)間長(zhǎng)度為1,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)y=1;(2)x+y-2=0;(3).【解析】(1)將圓的一般方程化為圓的標(biāo)準(zhǔn)方程,結(jié)合圖形即可求出結(jié)果;(2)根據(jù)題意可知直線過圓心,利用直線的兩點(diǎn)式方程計(jì)算即可得出結(jié)果;(3)設(shè)圓E的圓心E(a,1),根據(jù)題意可得圓E的半徑為,結(jié)合圓與圓的位置關(guān)系和兩點(diǎn)距離公式計(jì)算求出,進(jìn)而得出圓的標(biāo)準(zhǔn)方程.【小問1詳解】圓,即,其圓心為,半徑為1.因?yàn)辄c(diǎn)(2,1)在圓上,如圖,所以切線方程為y=1;【小問2詳解】由題意得,圓的直徑為2,所以直線過圓心,由直線的兩點(diǎn)式方程,得,即直線的方程為x+y-2=0;【小問3詳解】因?yàn)閳AE的圓心在直線y=1上,設(shè)圓E的圓心E(a,1),由圓E與y軸相切,得R=a()又圓E與圓相外切,所以,由兩點(diǎn)距離公式得,所以,解得,所以圓心,,所以圓E的方程為.18、(1)(2)見解析(3)【解析】(1)選①,根據(jù)與的關(guān)系即可得出答案;選②,根據(jù)與的關(guān)系結(jié)合等差數(shù)列的定義即可得出答案;選③,利用等差中項(xiàng)法可得數(shù)列是等差數(shù)列,再求出公差,即可得解;(2)求出數(shù)列的通項(xiàng)公式,再根據(jù)等比數(shù)列的定義即可得證;(3)求出數(shù)列的通項(xiàng)公式,再利用錯(cuò)位相減法即可得出答案.【小問1詳解】解:選①,當(dāng)時(shí),,當(dāng)時(shí),也成立,所以;選②,因?yàn)椋?,所以?shù)列是以為公差的等差數(shù)列,所以;選③且,因?yàn)?,所以?shù)列是等差數(shù)列,公差,所以;【小問2詳解】解:由(1)得,則,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列;【小問3詳解】解:,,①,②由①②得,所以.19、(1),(2)【解析】(1)由,,列出方程組,求得,即可求得數(shù)列的通項(xiàng)公式,利用公式可得.(2)由(1)求得,結(jié)合“裂項(xiàng)法”求和,即可求解.【詳解】(1)設(shè)等差數(shù)列的公差為,因?yàn)椋?,可得,解得,所以?shù)列的通項(xiàng)公式.(2)由(1)知,可得,所以數(shù)列的前項(xiàng)和:.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題主要考查了等差數(shù)列的通項(xiàng)公式的求解,以及“裂項(xiàng)法”求和的應(yīng)用,解答本題的關(guān)鍵是將的通項(xiàng)裂成兩項(xiàng)的差,利用裂項(xiàng)相消求和,屬于中檔題.20、(1)(2)【解析】(1)根據(jù)已知條件求得等差數(shù)列的首項(xiàng)和公差,由此求得.(2)利用裂項(xiàng)求和法求得.【小問1詳解】設(shè)等差數(shù)列的公差為,則,解得,.∴.【小問2詳解】由(1)知.∴.∴.21、(1)(2),證明見解析.(3)不存在,【解析】(1)數(shù)列為首項(xiàng)為公差為的等差數(shù)列,利用等差數(shù)列的求和公式即可得出結(jié)果;(2),,成等差數(shù)列,則+=2,根據(jù)等比數(shù)列求和公式計(jì)算可解得,進(jìn)而計(jì)算可得,即可判斷結(jié)果;(3)由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數(shù)列是等差數(shù)列,則,解方程組可得無解,則所有數(shù)對(duì)所構(gòu)成的集合為.【小問1詳解】,,數(shù)列是公比為q的等比數(shù)列,,數(shù)列為,數(shù)列為首項(xiàng)為公差為的等差數(shù)列,數(shù)列的前n項(xiàng)和.【小問2詳解】,,成等差數(shù)列,+=2,當(dāng)時(shí),+=,2,不符題意舍去,當(dāng)時(shí),.,即,,,(舍)或即,存在互不相同的正整數(shù),使得,,成等差數(shù)列,,,.【小問3詳解】由題意列出,,…,,,,,,…,在刪去以后,按原來的順序所得到的數(shù)列是等差數(shù)列,則,,即,解得:方程組無解.即符合條件的不存在,所有數(shù)對(duì)所構(gòu)成的集合為.22、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版工程清包合同:工程設(shè)計(jì)變更與施工方案調(diào)整
- 2024某企業(yè)與咨詢公司之間的管理咨詢服務(wù)合同
- 2025年度香菇食品產(chǎn)品線擴(kuò)展與市場(chǎng)拓展合同3篇
- 二零二五版智慧交通系統(tǒng)開發(fā)與技術(shù)支持協(xié)議2篇
- 二零二五版二手房買賣合同公證與節(jié)能環(huán)保改造服務(wù)協(xié)議2篇
- 2025年度跨國(guó)企業(yè)集團(tuán)財(cái)務(wù)合并報(bào)表編制合同3篇
- 2024年銷售代理協(xié)議(意向)3篇
- 個(gè)性化活動(dòng)策劃方案協(xié)議2024規(guī)格版A版
- 2024版地暖安裝工程承包合同書
- 2024版企業(yè)業(yè)務(wù)外包人員協(xié)議模板版B版
- 前列腺增生藥物治療
- 人工智能知識(shí)圖譜(歸納導(dǎo)圖)
- 滴滴補(bǔ)貼方案
- 民宿建筑設(shè)計(jì)方案
- 干部基本信息審核認(rèn)定表
- 2023年11月外交學(xué)院(中國(guó)外交培訓(xùn)學(xué)院)2024年度公開招聘24名工作人員筆試歷年高頻考點(diǎn)-難、易錯(cuò)點(diǎn)薈萃附答案帶詳解
- 春節(jié)行車安全常識(shí)普及
- 電機(jī)維護(hù)保養(yǎng)專題培訓(xùn)課件
- 汽車租賃行業(yè)利潤(rùn)分析
- 春節(jié)拜年的由來習(xí)俗來歷故事
- 2021火災(zāi)高危單位消防安全評(píng)估導(dǎo)則
評(píng)論
0/150
提交評(píng)論