版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆平煤高級中學高二數(shù)學第一學期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.有這樣一道題目:“戴氏善屠,日益功倍.初日屠五兩,今三十日屠訖,向共屠幾何?”其意思為:“有一個姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5兩肉,共屠了30天,問一共屠了多少兩肉?"在這個問題中,該屠夫前5天所屠肉的總兩數(shù)為()A.35 B.75C.155 D.3152.已知點在平面內(nèi),是平面的一個法向量,則下列各點在平面內(nèi)的是()A. B.C. D.3.已知函數(shù)(是的導函數(shù)),則()A.21 B.20C.16 D.114.已知雙曲線左右焦點為,,過的直線與雙曲線的右支交于P,Q兩點,且,若為以Q為頂角的等腰三角形,則雙曲線的離心率為()A. B.C. D.5.據(jù)記載,歐拉公式是由瑞士著名數(shù)學家歐拉發(fā)現(xiàn)的,該公式被譽為“數(shù)學中的天橋”特別是當時,得到一個令人著迷的優(yōu)美恒等式,將數(shù)學中五個重要的數(shù)(自然對數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學家評價它是“最完美的數(shù)學公式”.根據(jù)歐拉公式,復數(shù)的虛部()A. B.C. D.6.已知圓與直線至少有一個公共點,則的取值范圍為()A. B.C. D.7.在中,,,為所在平面上任意一點,則的最小值為()A.1 B.C.-1 D.-28.設(shè)等比數(shù)列的前項和為,且,則()A. B.C. D.9.已知函數(shù)在處取得極值,則()A. B.C. D.10.在等比數(shù)列中,,公比,則()A. B.6C. D.211.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個高階等差數(shù)列,其前7項分別為1,5,11,21,37,61,95,則該數(shù)列的第7項為()A.101 B.99C.95 D.9112.雙曲線的焦點到漸近線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若存在實常數(shù)k和b,使得函數(shù)F(x)和G(x)對其公共定義域上的任意實數(shù)x都滿足:F(x)≥kx+b和G(x)≤kx+b恒成立,則稱此直線y=kx+b為F(x)和G(x)的“隔離直線”,已知函數(shù)f(x)=x2(x∈R),g(x)(x<0),h(x)=2elnx,有下列命題:①F(x)=f(x)﹣g(x)內(nèi)單調(diào)遞增;②f(x)和g(x)之間存在“隔離直線”,且b的最小值為﹣4;③f(x)和g(x)之間存在“隔離直線”,且k的取值范圍是(﹣4,0];④f(x)和h(x)之間存在唯一的“隔離直線”y=2x﹣e其中真命題為_____(請?zhí)钏姓_命題的序號)14.已知向量,,并且、共線且方向相同,則______.15.兩條平行直線與的距離是__________16.已知點,圓:.若過點的圓的切線只有一條,求這條切線方程____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓一個頂點恰好是拋物線的焦點,橢圓C的離心率為.(Ⅰ)求橢圓C的標準方程;(Ⅱ)從橢圓C在第一象限內(nèi)的部分上取橫坐標為2的點P,若橢圓C上有兩個點A,B使得的平分線垂直于坐標軸,且點B與點A的橫坐標之差為,求直線AP的方程.18.(12分)設(shè):實數(shù)滿足,:實數(shù)滿足(1)若,且為真,求實數(shù)的取值范圍;(2)若是的必要不充分條件,求實數(shù)的取值范圍19.(12分)已知函數(shù)(1)若函數(shù)的圖象在點處的切線與平行,求b的值;(2)在(1)的條件下證明:20.(12分)已知等比數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.21.(12分)已知函數(shù)(1)求函數(shù)單調(diào)區(qū)間;(2)函數(shù)在區(qū)間上的最小值小于零,求a的取值范圍22.(10分)求滿足下列條件的雙曲線的標準方程(1)焦點在x軸上,實軸長為4,實半軸長是虛半軸長的2倍;(2)焦點在y軸上,漸近線方程為,焦距長為
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】構(gòu)造等比數(shù)列模型,利用等比數(shù)列的前項和公式計算可得結(jié)果.【詳解】由題意可得該屠夫每天屠的肉成等比數(shù)列,記首項為,公比為,前項和為,所以,,因此前5天所屠肉的總兩數(shù)為.故選:C.【點睛】本題考查了等比數(shù)列模型,考查了等比數(shù)列的前項和公式,屬于基礎(chǔ)題.2、B【解析】設(shè)平面內(nèi)的一點為,由可得,進而可得滿足的方程,將選項代入檢驗即可得正確選項.【詳解】設(shè)平面內(nèi)的一點為(不與點重合),則,因為是平面的一個法向量,所以,所以,即,對于A:,故選項A不正確;對于B:,故選項B正確;對于C:,故選項C不正確;對于D:,故選項D不正確,故選:B.3、B【解析】根據(jù)已知求出,即得解.【詳解】解:由題得,所以.故選:B4、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意,又,所以,從而,,,中,,中.,所以,,所以,故選:C5、D【解析】由歐拉公式的定義和復數(shù)的概念進行求解.【詳解】由題意,得,則復數(shù)的虛部為.故選:D.6、C【解析】利用點到直線距離公式求出圓心到直線的距離范圍,從而求出的取值范圍.【詳解】圓心到直線的距離,當且僅當時等號成立,故只需即可.故選:C7、C【解析】以為建立平面直角坐標系,設(shè),把向量的數(shù)量積用坐標表示后可得最小值【詳解】如圖,以為建立平面直角坐標系,則,設(shè),,,,,∴,∴當時,取得最小值故選:C【點睛】本題考查向量的數(shù)量積,解題方法是建立平面直角坐標系,把向量的數(shù)量積轉(zhuǎn)化為坐標表示8、C【解析】根據(jù)給定條件求出等比數(shù)列公比q的關(guān)系,再利用前n項和公式計算得解.【詳解】設(shè)等比數(shù)列的的公比為q,由得:,解得,所以.故選:C9、B【解析】根據(jù)極值點處導函數(shù)為零可求解.【詳解】因為,則,由題意可知.經(jīng)檢驗滿足題意故選:B10、D【解析】利用等比數(shù)列的通項公式求解【詳解】由等比數(shù)列的通項公式得:.故選:D11、C【解析】根據(jù)所給數(shù)列找到規(guī)律:兩次后項減前項所得數(shù)列為公差為2的數(shù)列,進而反向確定原數(shù)列的第7項.【詳解】根據(jù)所給定義,用數(shù)列的后一項減去前一項得到一個數(shù)列,得到的數(shù)列也用后一項減去前一項得到一個數(shù)列,即得到了一個等差數(shù)列,如圖:故選:C.12、D【解析】根據(jù)題意,由雙曲線的標準方程可得雙曲線的焦點坐標以及漸近線方程,由點到直線的距離公式計算可得答案.【詳解】解:根據(jù)題意,雙曲線的方程為,其焦點坐標為,其漸近線方程為,即,則其焦點到漸近線的距離;故選D.【點睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是求出雙曲線的漸近線與焦點坐標.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】①求出F(x)=f(x)﹣g(x)的導數(shù),檢驗在x∈(,0)內(nèi)的導數(shù)符號,即可判斷;②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,x2≥kx+b對一切實數(shù)x成立,即有△1≤0,又kx+b對一切x<0成立,△2≤0,k≤0,b≤0,根據(jù)不等式的性質(zhì),求出k,b的范圍,即可判斷②③;④存在f(x)和g(x)的隔離直線,那么該直線過這個公共點,設(shè)隔離直線的斜率為k.則隔離直線,構(gòu)造函數(shù),求出函數(shù)函數(shù)的導數(shù),根據(jù)導數(shù)求出函數(shù)的最值【解答】解:①∵F(x)=f(x)﹣g(x)=x2,∴x∈(,0),F(xiàn)′(x)=2x0,∴F(x)=f(x)﹣g(x)在x∈(,0)內(nèi)單調(diào)遞增,故①對;②、③設(shè)f(x)、g(x)的隔離直線為y=kx+b,則x2≥kx+b對一切實數(shù)x成立,即有△1≤0,k2+4b≤0,又kx+b對一切x<0成立,則kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k?﹣4≤k≤0,同理?﹣4≤b≤0,故②對,③錯;④函數(shù)f(x)和h(x)的圖象在x處有公共點,因此存在f(x)和g(x)的隔離直線,那么該直線過這個公共點,設(shè)隔離直線的斜率為k.則隔離直線方程為y﹣e=k(x),即y=kx﹣ke,由f(x)≥kx﹣ke(x∈R),可得x2﹣kx+ke≥0當x∈R恒成立,則△≤0,只有k=2,此時直線方程為:y=2x﹣e,下面證明h(x)≤2x﹣e,令G(x)=2x﹣e﹣h(x)=2x﹣e﹣2elnx,G′(x),當x時,G′(x)=0,當0<x時,G′(x)<0,當x時,G′(x)>0,則當x時,G(x)取到極小值,極小值是0,也是最小值所以G(x)=2x﹣e﹣g(x)≥0,則g(x)≤2x﹣e,當x>0時恒成立∴函數(shù)f(x)和g(x)存在唯一的隔離直線y=2x﹣e,故④正確故答案為:①②④【點睛】本題以命題的真假判斷與應用為載體,考查新定義,關(guān)鍵是對新定義的理解,考查函數(shù)的求導,利用導數(shù)求最值,屬于難題.14、4【解析】根據(jù)空間向量共線基本定理,可設(shè).由坐標運算求得的值,進而求得.即可求得的值.【詳解】根據(jù)空間向量共線基本定理,可設(shè)由向量的坐標運算可得解方程可得所以.故答案為:【點睛】本題考查了空間向量共線基本定理的應用,根據(jù)向量的共線定理求參數(shù),屬于基礎(chǔ)題.15、5【解析】根據(jù)兩平行直線,可求得a值,根據(jù)兩平行線間距離公式,即可得答案.【詳解】因為兩平行直線與,所以,解得,所以兩平行線的距離.故答案為:516、或【解析】由題設(shè)知A在圓上,代入圓的方程求出參數(shù)a,結(jié)合切線的性質(zhì)及點斜式求切線方程.【詳解】因為過的圓的切線只有一條,則在圓上,所以,則,且切線斜率,即,所以切線方程或,整理得或.故答案為:或.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由題意可得關(guān)于參數(shù)的方程,解之即可得到結(jié)果;(Ⅱ)設(shè)直線AP的斜率為k,聯(lián)立方程結(jié)合韋達定理可得A點坐標,同理可得B點坐標,結(jié)合橫坐標之差為,可得直線方程.【詳解】(Ⅰ)由拋物線方程可得焦點為,則橢圓C的一個頂點為,即.由,解得.∴橢圓C的標準方程是;(Ⅱ)由題可知點,設(shè)直線AP的斜率為k,由題意知,直線BP的斜率為,設(shè),,直線AP的方程為,即.聯(lián)立方程組消去y得.∵P,A為直線AP與橢圓C的交點,∴,即.把換成,得.∴,解得,當時,直線BP的方程為,經(jīng)驗證與橢圓C相切,不符合題意;當時,直線BP的方程為,符合題意.∴直線AP得方程為.【點睛】關(guān)鍵點點睛:兩條直線關(guān)于直線對稱,兩直線的傾斜角互補,斜率互為相反數(shù).18、(1)(2)【解析】(1)根據(jù)二次不等式與分式不等式的求解方法求得命題p,q為真時實數(shù)x的取值范圍,再求交集即可;(2)先求得,再根據(jù)是的必要不充分條件可得,再根據(jù)集合包含關(guān)系,根據(jù)區(qū)間端點列不等式求解即可【小問1詳解】當時,,解得,即p為真時,實數(shù)x的取值范圍為.由,解得,即q為真時,實數(shù)x的取值范圍為若為真,則,解得實數(shù)x的取值范圍為【小問2詳解】若p是q的必要不充分條件,則且設(shè),,則,又由,得,因為,則,有,解得因此a的取值范圍為19、(1);(2)證明見解析.【解析】(1)由題意可得,從而可求出,(2)先構(gòu)造函數(shù),利用導數(shù)可求得對任意恒成立,對任意恒成立,從而將問題轉(zhuǎn)化為只需證對任意恒成立,再次構(gòu)造函數(shù),利用導數(shù)求出其最大值小于等于即可【詳解】(1)解:∵函數(shù)的圖象在點處的切線與平行,∴,解得;證明:(2)由(1)得即對任意恒成立,令,則,∵當時,,∴函數(shù)在上單調(diào)遞增,∵,∴對任意恒成立,即對任意恒成立,∴只需證對任意恒成立即可,即只需證對任意恒成立,令,則,由單調(diào)遞減,且知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,∴,∴得證,故不等式對任意恒成立20、(1)(2)【解析】(1)根據(jù)得到,再結(jié)合為等比數(shù)列求出首項,進而求得數(shù)列的通項公式;(2)由(1)求得數(shù)列的通項公式,進而利用公式法即可求出【小問1詳解】解:(1),,當時,,即,又,為等比數(shù)列,所以,,數(shù)列的通項公式為【小問2詳解】(2)由(1)知,則,數(shù)列的前項和21、(1)答案見解析;(2).【解析】(1)對求導并求定義域,討論、分別判斷的符號,進
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 全職合同范本(2篇)
- 廣告業(yè)務員銷售工作參考計劃范文2
- 光船租賃合同范本
- 汽車庫租賃合同
- 2025年石油鉆探、開采專用設(shè)備項目發(fā)展計劃
- 2025年金屬切削機床項目合作計劃書
- 2024擔保協(xié)議標準格式匯編版B版
- 2024年股權(quán)轉(zhuǎn)讓:資金監(jiān)管協(xié)議模板3篇
- 2024幼兒園環(huán)境創(chuàng)設(shè)與設(shè)施采購合同范本3篇
- 第4課 洋務運動(分層作業(yè))(原卷版)
- 口腔正畸科普課件
- 2024年廣東省普通高中學業(yè)水平合格性地理試卷(1月份)
- 住宅樓安全性檢測鑒定方案
- 配送管理招聘面試題與參考回答2024年
- 江蘇省語文小學三年級上學期期末試題及解答參考(2024年)
- 黑龍江哈爾濱市省實驗中學2025屆數(shù)學高一上期末監(jiān)測試題含解析
- 小學一年級數(shù)學思維訓練100題(附答案)
- 安全生產(chǎn)治本攻堅三年行動方案(一般工貿(mào)) 2024
- 2024年廣東省廣州市黃埔區(qū)中考一模語文試題及答案
- 飯?zhí)脪炜繀f(xié)議合同范本
- 2023-2024學年遼寧省重點高中沈陽市郊聯(lián)體高二上學期期末考試生物試題(解析版)
評論
0/150
提交評論