2025屆陜西省西安市第七十中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
2025屆陜西省西安市第七十中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
2025屆陜西省西安市第七十中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
2025屆陜西省西安市第七十中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
2025屆陜西省西安市第七十中學高二數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆陜西省西安市第七十中學高二數(shù)學第一學期期末監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.2.已知是兩條不同的直線,是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件3.函數(shù)直線與的圖象相交于A、B兩點,則的最小值為()A.3 B.C. D.4.《米老鼠和唐老鴨》這部動畫給我們的童年帶來了許多美好的回憶,令我們印象深刻.如圖所示,有人用3個圓構(gòu)成米奇的簡筆畫形象.已知3個圓方程分別為:圓圓,圓若過原點的直線與圓、均相切,則截圓所得的弦長為()A. B.C. D.5.若雙曲線的離心率為,則其漸近線方程為A.y=±2x B.y=C. D.6.數(shù)學美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊藏于特有的抽象概念,公式符號,推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學的真實美.平面直角坐標系中,曲線:就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結(jié)論:①曲線圍成的圖形的面積是;②曲線上的任意兩點間的距離不超過;③若是曲線上任意一點,則的最小值是其中正確結(jié)論的個數(shù)為()A. B.C. D.7.在中,角A,B,C所對的邊分別為a,b,c,,,則()A. B.1C.2 D.48.已知雙曲線,其漸近線方程為,則a的值為()A. B.C. D.29.青花瓷是中華陶瓷燒制工藝的珍品,也是中國瓷器的主流品種之一.如圖,是一青花瓷花瓶,其外形上下對稱,可看成是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所形成的曲面.若該花瓶的瓶口直徑為瓶身最小直徑的2倍,花瓶恰好能放入與其等高的正方體包裝箱內(nèi),則雙曲線的離心率為()A. B.C. D.10.設(shè),若函數(shù),有大于零的極值點,則A. B.C. D.11.已知拋物線的焦點為,為坐標原點,點在拋物線上,且,點是拋物線的準線上的一動點,則的最小值為().A. B.C. D.12.若直線的斜率,則直線的傾斜角的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線上一點到準線的距離為,到直線:的距離為,則的最小值為__________14.已知橢圓C:,點M與C的焦點不重合,若M關(guān)于C的焦點的對稱點分別為A,B,線段MN的中點在C上,則_________.15.如圖,已知AB,CD分別是圓柱上、下底面圓的直徑,且,若該圓柱的底面圓直徑是其母線長的2倍,則異面直線AC與BD所成角的余弦值為______16.在梯形中,,,.將梯形繞所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,動點到定點的距離比到軸的距離大,設(shè)動點的軌跡為曲線,分別過曲線上的兩點,做曲線的兩條切線,且交于點,與直線交于兩點(1)求曲線的方程;(2)求面積的最小值.18.(12分)設(shè)二次函數(shù).(1)若是函數(shù)的兩個零點,且最小值為.①求證:;②當且僅當a在什么范圍內(nèi)時,函數(shù)在區(qū)間上存在最小值?(2)若任意實數(shù)t,在閉區(qū)間上總存在兩實數(shù)m,n,使得成立,求實數(shù)a的取值范圍.19.(12分)直線經(jīng)過點,且與圓相交與兩點,截得的弦長為,求的方程.20.(12分)已知直線過點(1)若直線與直線垂直,求直線的方程;(2)若直線在兩坐標軸的截距相等,求直線的方程21.(12分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當時,已知是假命題,是真命題,求x的取值范圍.22.(10分)已知直線:,直線:.(1)若,求與的距離;(2)若,求與的交點的坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】直接利用空間向量基本定理求解即可【詳解】因為在平行六面體中,,,,所以,故選:B2、B【解析】根據(jù)垂直關(guān)系的性質(zhì)可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.3、C【解析】先求出AB坐標,表示出,規(guī)定函數(shù),其中,利用導數(shù)求最小值.【詳解】聯(lián)立解得可得點.聯(lián)立解得可得點.由題意可得解得,令,其中,∴.∴函數(shù)單調(diào)遞減;.因此,的最小值為故選:C【點睛】距離的最值求解:(1)幾何法求最值;(2)代數(shù)法:表示出距離,利用函數(shù)求最值.4、A【解析】設(shè)直線,利用直線與圓相切,求得斜率,再利用弦長公式求弦長【詳解】設(shè)過點的直線.由直線與圓、圓均相切,得解得(1).設(shè)點到直線的距離為則(2).又圓的半徑直線截圓所得弦長結(jié)合(1)(2)兩式,解得5、B【解析】雙曲線的離心率為,漸進性方程為,計算得,故漸進性方程為.【考點定位】本小題考查了離心率和漸近線等雙曲線的性質(zhì).6、C【解析】結(jié)合已知條件寫出曲線的解析式,進而作出圖像,對于①,通過圖像可知,所求面積為四個半圓和一個正方形面積之和,結(jié)合數(shù)據(jù)求解即可;對于②,根據(jù)圖像求出曲線上的任意兩點間的距離的最大值即可判斷;對于③,將問題轉(zhuǎn)化為點到直線的距離,然后利用圓上一點到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個半圓的面積與邊長為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點間的距離的最大值為兩個半徑與正方形的邊長之和,即,故②錯誤;因為到直線的距離為,所以,當最小時,易知在曲線的第一象限內(nèi)的圖像上,因為曲線的第一象限內(nèi)的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.7、C【解析】直接運用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C8、A【解析】由雙曲線方程,根據(jù)其漸近線方程有,求參數(shù)值即可.【詳解】由漸近線,結(jié)合雙曲線方程,∴,可得.故選:A.9、C【解析】由題意作出軸截面,最短直徑為2a,根據(jù)已知條件點(2a,2a)在雙曲線上,代入雙曲線的標準方程,結(jié)合a,b,c的關(guān)系可求得離心率e的值【詳解】由題意作出軸截面如圖:M點是雙曲線與截面正方形的交點之一,設(shè)雙曲線的方程為:最短瓶口直徑為A1A2=2a,則由已知可得M是雙曲線上的點,且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化簡后得,解得故選:C10、B【解析】設(shè),則,若函數(shù)在x∈R上有大于零的極值點即有正根,當有成立時,顯然有,此時.由,得參數(shù)a的范圍為.故選B考點:利用導數(shù)研究函數(shù)的極值11、A【解析】求出點坐標,做出關(guān)于準線的對稱點,利用連點之間相對最短得出為的最小值【詳解】解:拋物線的準線方程為,,到準線的距離為2,故點縱坐標為1,把代入拋物線方程可得不妨設(shè)在第一象限,則,點關(guān)于準線的對稱點為,連接,則,于是故的最小值為故選:A【點睛】本題考查了拋物線的簡單幾何性質(zhì),屬于基礎(chǔ)題12、B【解析】根據(jù)斜率的取值范圍,結(jié)合來求得傾斜角的取值范圍.【詳解】設(shè)傾斜角為,因為,且,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)拋物線的定義可知,點P到拋物線準線的距離等于點P到焦點F的距離,過焦點F作直線:的垂線,此時取得最小值,利用點到直線的距離公式,即可求解.【詳解】由題意,拋物線的焦點坐標為,準線方程為,如圖所示,根據(jù)拋物線的定義可知,點P到拋物線準線的距離等于點P到焦點F的距離,過焦點F作直線:的垂線,此時取得最小值,由點到直線的距離公式可得,即的最小值為3.【點睛】本題主要考查了拋物線的標準方程及其簡單的幾何性質(zhì)的應(yīng)用,以及拋物線的最值問題,其中解答中根據(jù)拋物線的定義可知,點P到拋物線準線的距離等于點P到焦點F的距離,利用點到直線的距離公式求解是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及運算與求解能力,屬于中檔試題.14、【解析】設(shè)M,N的中點坐標為P,,則;由于,化簡可得,根據(jù)橢圓的定義==6,所以12.考點:1.橢圓的定義;2.兩點距離公式.15、.【解析】利用空間向量夾角公式進行求解即可.【詳解】取CD的中點O,以O(shè)為原點,以CD所在直線為x軸,以底面內(nèi)過點O且與CD垂直的直線為y軸,以過點O且與底面垂直的直線為z軸,建立如圖所示的空間直角坐標系設(shè),則,,,,,,所以,所以異面直線AC與BD所成角的余弦值為故答案為:16、##【解析】畫出幾何體的直觀圖,利用已知條件,求解幾何體的體積即可【詳解】梯形ABCD:由題意可知空間幾何體的直觀圖如圖:旋轉(zhuǎn)體是底面半徑為1,高為2的圓柱,挖去一個相同底面高為1的圓錐,幾何體的體積為:故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由題意可得化簡可得答案;(2)求出、方程并得到、點坐標,再聯(lián)立,方程求出交點和、點到的距離,可得,設(shè),與拋物線方程聯(lián)立利用韋達定理得到,設(shè),記,利用導數(shù)可得答案..【小問1詳解】由題意可知:,即:化簡得:;【小問2詳解】由題意可知:,,,過點的切線斜率為,方程為:①,令,,則,同理:方程為:②,,聯(lián)立①②得:,的交點,,點到的距離,所以③,設(shè):,則,整理得,所以,由韋達定理得:,,代入③式得:,設(shè),記,則,令得(舍負),時,單調(diào)遞減:時,單調(diào)遞增,所以,當且僅當時的最小值為.18、(1)①證明見解析;②(2)【解析】(1)①根據(jù)二次函數(shù)的性質(zhì)和一元二次方程的求根公式,求得,即可證得;②由①知,區(qū)間,根據(jù)二次函數(shù)的性質(zhì),即可求解.(2)存在兩實數(shù),使得成立,轉(zhuǎn)化為在區(qū)間上,有成立,設(shè)﹐結(jié)合二次函數(shù)的圖象與性質(zhì),分類討論,即可求解.【小問1詳解】解:①由題意,函數(shù)二次函數(shù),因為最小值為,可得,即,因為,所以根據(jù)求根公式得,所以.②由①知,區(qū)間因為,對稱軸,且函數(shù)在區(qū)間上存在最小值,所以,因為,所以解得,所以,即a的取值范圍為.【小問2詳解】解:存在兩實數(shù),使得成立,則在區(qū)間上,有成立,設(shè)﹐函數(shù)對稱軸為①當即時,在上單調(diào)減,,此時;②當即時,,此時③當即時,,此時;④當即時,,此時;綜合①②③④得,且最小值為,因為對任意實數(shù)t,都有,所以只需,即,所以實數(shù)a的取值范圍.19、或【解析】直線截圓得的弦長為,結(jié)合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點到直線的距離公式列方程求出直線斜率,由點斜式可得結(jié)果.【詳解】設(shè)直線的方程為,即,因為圓的半徑為5,截得的弦長為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點睛】本題主要考查點到直線距離公式以及圓的弦長的求法,求圓的弦長有兩種方法:一是利用弦長公式,結(jié)合韋達定理求解;二是利用半弦長,弦心距,圓半徑構(gòu)成直角三角形,利用勾股定理求解.20、(1)(2)或【解析】(1)由兩條直線垂直可設(shè)直線的方程為,將點的坐標代入計算即可;(2)當直線過原點時,根據(jù)直線的點斜式方程即可得出結(jié)果;當直線不過原點時可設(shè)直線的方程為,將點的坐標代入計算即可.【小問1詳解】解:因為直線與直線垂直所以,設(shè)直線的方程為,因為直線過點,所以,解得,所以直線的方程為【小問2詳解】解:當直線過原點時,斜率為,由點斜式求得直線的方程是,即當直線不過原點時,設(shè)直線的方程為,把點代入方程得,所以直線的方程是綜上,所求直線的方程為或21、(1);(2).【解析】(1)解不等式組即得解;(2)由題得p、q一真一假,分兩種情況討論得解.【小問1詳解】解:由題意知p是q的充分條件,即p集合包含于q集合,有;【小問2詳解】解:當時,有,由題意知,p、q一真一假,當p真q假時,,當p假q真

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論