版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西百色市田陽高中2025屆高一上數學期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數取最小值時,則()A. B.C. D.2.已知,,,則,,三者的大小關系是()A. B.C. D.3.命題“對任意x∈R,都有x2≥1”的否定是()A.對任意x∈R,都有x2<1 B.不存在x∈R,使得x2<1C.存在x∈R,使得x2≥1 D.存在x∈R,使得x2<14.已知f(x)=是R上的減函數,那么a的取值范圍是()A.(0,1) B.C. D.5.如圖,在正方體ABCD﹣A1B1C1D1中,異面直線AC與A1D1所成的角是A.30° B.45°C.60° D.90°6.已知函數,若存在互不相等的實數,,滿足,則的取值范圍是()A. B.C. D.7.命題“,使得”的否定是()A., B.,C., D.,8.高斯是德國著名的數學家,用其名字命名的“高斯函數”為:設,用表示不超過的最大整數,則稱為高斯函數,例如:,,已知函數(),則函數的值域為()A. B.C. D.9.已知函數.若關于x的方程在上有解,則實數m的取值范圍是()A. B.C. D.10.設,,,則下列正確的是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.為了得到函數的圖象,可以將函數的圖象向右平移_________個單位長度而得12.對數函數(且)的圖象經過點,則此函數的解析式________13.已知,,則的值為__________14.化簡=________15.已知圓心為,且被直線截得的弦長為,則圓的方程為__________16.如圖,網格紙上正方形小格的邊長為1,圖中粗線畫出的是某三棱錐的三視圖,則該三棱錐的體積為__________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1)計算(2)已知角的終邊過點,求角的三個三角函數值18.如圖所示,已知長方形ABCD,AD=2CD=4,M、N分別為AD、BC的中點,將長方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD(1)求證:直線CM⊥面DFN;(2)求點C到平面FDM的距離19.已知函數,(,且)(1)求函數的定義域;(2)判斷函數的奇偶性,并說明理由;(3)設,解不等式20.定義在上的函數,如果滿足:對任意,存在常數,都有成立,則稱是上的有界函數,其中稱為函數的一個上界.已知函數,.(1)若函數為奇函數,求實數的值;(2)在(1)的條件下,求函數在區(qū)間上的所有上界構成的集合;(3)若函數在上是以為上界有界函數,求實數的取值范圍.21.設函數(1)若不等式的解集是,求不等式的解集;(2)當時,在上恒成立,求實數的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】利用輔助角公式化簡整理,得到輔助角與的關系,利用三角函數的圖像和性質分析函數的最值,計算正弦值即可.【詳解】,其中,因為當時取得最小值,所以,故.故選:B.2、C【解析】分別求出,,的范圍,即可比較大小.【詳解】因為在上單調遞增,所以,即,因為在上單調遞減,所以,即,因為在單調遞增,所以,即,所以,故選:C3、D【解析】根據含有一個量詞的否定是改量詞、否結論直接得出.【詳解】因為含有一個量詞的否定是改量詞、否結論,所以命題“對任意x∈R,都有x2≥1”的否定是“存在x∈R,使得x2<1”.故選:D.【點睛】本題考查含有一個量詞的否定,屬于基礎題.4、B【解析】要使函數在上為減函數,則要求①當,在區(qū)間為減函數,②當時,在區(qū)間為減函數,③當時,,綜上①②③解不等式組即可.【詳解】令,.要使函數在上為減函數,則有在區(qū)間上為減函數,在區(qū)間上為減函數且,∴,解得.故選:B【點睛】考查根據分段函數的單調性求參數的問題,根據單調性的定義,注意在分段點處的函數值的關系,屬于中檔題.5、B【解析】在正方體ABCD﹣A1B1C1D1中,AC∥A1C1,所以為異面直線AC與A1D1所成的角,由此能求出結果.【詳解】因為AC∥A1C1,所以為異面直線AC與A1D1所成的角,因為是等腰直角三角形,所以.故選:B【點睛】本題考查異面直線所成的角的求法,屬于基礎題.6、D【解析】作出函數的圖象,根據題意,得到,結合圖象求出的范圍,即可得出結果.【詳解】假設,作出的圖象如下;由,所以,則令,所以,由,所以,所以,故.故選:D.【點睛】方法點睛:已知函數零點個數(方程根的個數)求參數值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域問題加以解決;(3)數形結合法:先對解析式變形,進而構造兩個函數,然后在同一平面直角坐標系中畫出函數的圖象,利用數形結合的方法求解.7、B【解析】根據特稱命題的否定的知識確定正確選項.【詳解】原命題是特稱命題,其否定是全稱命題,注意否定結論,所以,命題“,使得”的否定是,.故選:B8、B【解析】先利用換元思想求出函數的值域,再分類討論,根據新定義求得函數的值域【詳解】(),令,可得,在上遞減,在上遞增,時,有最小值,又因為,所以當時,,即函數的值域為,時,;時,;時,;的值域是故選:B【點睛】思路點睛:新定義是通過給出一個新概念,或約定一種新運算,或給出幾個新模型來創(chuàng)設全新的問題情景,要求考生在閱讀理解的基礎上,依據題目提供的信息,聯(lián)系所學的知識和方法,實現(xiàn)信息的遷移,達到靈活解題的目的.遇到新定義問題,應耐心讀題,分析新定義的特點,弄清新定義的性質,按新定義的要求,“照章辦事”,逐條分析、驗證、運算,使問題得以解決.9、C【解析】先對函數化簡變形,然后由在上有解,可知,所以只要求出在上即可【詳解】,由,得,所以,所以,即,由在上有解,可知,所以,得,氫實數m的取值范圍是,故選:C10、D【解析】計算得到,,,得到答案.【詳解】,,.故.故選:.【點睛】本題考查了利用函數單調性比較數值大小,意在考查學生對于函數性質的靈活運用.二、填空題:本大題共6小題,每小題5分,共30分。11、(答案不唯一);【解析】由于,再根據平移求解即可.【詳解】解:由于,故將函數的圖象向右平移個單位長度可得函數圖像.故答案為:12、【解析】將點的坐標代入函數解析式,求出的值,由此可得出所求函數的解析式.【詳解】由已知條件可得,可得,因為且,所以,.因此,所求函數解析式為.故答案為:.13、【解析】根據兩角和的正弦公式即可求解.【詳解】由題意可知,因為,所以,所以,則故答案為:.14、【解析】利用對數的運算法則即可得出【詳解】解:原式lg0.12=2+2lg10﹣1=2﹣2故答案為【點睛】本題考查了對數的運算法則,屬于基礎題15、【解析】由題意可得弦心距d=,故半徑r=5,故圓C的方程為x2+(y+2)2=25,故答案為x2+(y+2)2=2516、1【解析】由圖可知,該三棱錐的體積為V=三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2),,【解析】(1)根據指數、對數運算性質求解即可.(2)根據三角函數定義求解即可.【詳解】(1).(2)由題知:,所以,,18、(1)見解析;(2)【解析】(1)推導出DN⊥CM,CM⊥FN,由此能證明CM⊥平面DFN.(2)以M為原點,MN為x軸,MA為y軸,ME為z軸,建立空間直角坐標系,利用向量法能求出點C到平面FDM的距離【詳解】證明:(1)∵長方形ABCD,AD=2CD=4,M、N分別為AD、BC的中點,將長方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD因為長方形ABCD,DC=CN=2,所以四邊形DCNM是正方形,∴DN⊥CM,因為平面MNFE⊥平面ABCD,F(xiàn)N⊥MN,MNFE∩平面ABCD=MN,所以FN⊥平面DCNM,因為CM平面DCNM,所以CM⊥FN,又DN∩FN=N,∴CM⊥平面DFN(2)以M為原點,MN為x軸,MA為y軸,ME為z軸,建立空間直角坐標系,則C(2,-2,0),D(0,-2,0),F(xiàn)(2,0,2),M(0,0,0),=(2,-2,0),=(0,-2,0),=(2,0,2),設平面FDM的法向量=(x,y,z),則,取x=1,得=(1,0,-1),∴點C到平面FDM的距離d===【點睛】本題考查線面垂直的證明,考查點到平面的距離的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,考查數形結合思想,是中檔題19、(1);(2)奇函數,理由見解析;(3).【解析】(1)由對數真數大于零可構造不等式組求得結果;(2)根據奇偶性定義判斷即可得到結論;(3)將函數化為,由對數函數性質可知,解不等式求得結果.【詳解】(1)由題意得:,解得:,定義域為.(2),為定義在上的奇函數.(3)當時,,由得:,解得:,的解集為.20、(1);(2);(3).【解析】(1)由奇函數的定義,代入即可得出結果.(2)由復合函數的單調性,可得在區(qū)間上單調遞增,進而求出值域,即可得出結果.(3)由題意可得在上恒成立,即在上恒成立,利用函數單調性的定義證明單調性,再求出值域,即可求出結果.【詳解】(1)因函數為奇函數,所以,即,即,得,而當時不合題意,故(2)由(1)得:,而,易知在區(qū)間上單調遞增,所以函數在區(qū)間上單調遞增,所以函數在區(qū)間上的值域為,所以,故函數在區(qū)間上的所有上界構成集合為.(3)由題意知,在上恒成立.,.在上恒成立.設,,,由得設,,所以在上遞減,在上遞增,在上的最大值為,在上的最小值為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄭州軌道工程職業(yè)學院《軟裝面料再造》2023-2024學年第一學期期末試卷
- 肇慶醫(yī)學高等??茖W?!督ㄖこ逃嬃颗c計價》2023-2024學年第一學期期末試卷
- 運城幼兒師范高等??茖W?!秳赢嫾挤ā?023-2024學年第一學期期末試卷
- 區(qū)塊鏈確保食品追溯透明
- DB2201T 67-2024 架子牛引進質量控制規(guī)范
- 數學啟蒙游戲課
- 房地產經紀綜合能力-《房地產經紀綜合能力》點睛提分卷2
- 七夕節(jié)的傳統(tǒng)與現(xiàn)代模板
- 農學研究答辯模板
- 二零二五年房地產廣告策劃合同1200字模板2篇
- 課題申報書:大中小學鑄牢中華民族共同體意識教育一體化研究
- 巖土工程勘察課件0巖土工程勘察
- 《腎上腺腫瘤》課件
- 2024-2030年中國典當行業(yè)發(fā)展前景預測及融資策略分析報告
- 《乘用車越野性能主觀評價方法》
- 幼師個人成長發(fā)展規(guī)劃
- 2024-2025學年北師大版高二上學期期末英語試題及解答參考
- 批發(fā)面包采購合同范本
- 乘風化麟 蛇我其誰 2025XX集團年終總結暨頒獎盛典
- 2024年大數據分析公司與中國政府合作協(xié)議
- 一年級數學(上)計算題專項練習匯編
評論
0/150
提交評論