2025屆山西省晉中市數(shù)學(xué)高二上期末聯(lián)考試題含解析_第1頁
2025屆山西省晉中市數(shù)學(xué)高二上期末聯(lián)考試題含解析_第2頁
2025屆山西省晉中市數(shù)學(xué)高二上期末聯(lián)考試題含解析_第3頁
2025屆山西省晉中市數(shù)學(xué)高二上期末聯(lián)考試題含解析_第4頁
2025屆山西省晉中市數(shù)學(xué)高二上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆山西省晉中市數(shù)學(xué)高二上期末聯(lián)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù),則曲線在點(diǎn)處的切線方程為()A. B.C. D.2.在四棱錐中,四邊形為菱形,平面,是中點(diǎn),下列敘述正確的是()A.平面 B.平面C.平面平面 D.平面平面3.在棱長為1的正四面體中,點(diǎn)滿足,點(diǎn)滿足,當(dāng)和的長度都為最短時(shí),的值是()A. B.C. D.4.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A.5 B.10C.4 D.5.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)在雙曲線的右支上,且,則雙曲線離心率的取值范圍是()A. B.C. D.6.如圖,某圓錐軸截面是等邊三角形,點(diǎn)是底面圓周上的一點(diǎn),且,點(diǎn)是的中點(diǎn),則異面直線與所成角的余弦值是()A. B.C. D.7.如圖,某綠色蔬菜種植基地在A處,要把此處生產(chǎn)的蔬菜沿道路或運(yùn)送到形狀為四邊形區(qū)域的農(nóng)貿(mào)市場中去,現(xiàn)要求在農(nóng)貿(mào)市場中確定一條界線,使位于界線一側(cè)的點(diǎn)沿道路運(yùn)送蔬菜較近,而另一側(cè)的點(diǎn)沿道路運(yùn)送蔬菜較近,則該界線所在曲線為()A.圓 B.橢圓C.雙曲線 D.拋物線8.魏晉時(shí)期數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù),他在《九章算術(shù)》方田章圓田術(shù)中指出:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”這是注述中所用的割圓術(shù)是一種無限與有限的轉(zhuǎn)化過程,比如在正數(shù)中的“”代表無限次重復(fù),設(shè),則可以利用方程求得,類似地可得到正數(shù)()A.2 B.3C. D.9.已知,為雙曲線的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足,那么點(diǎn)P到x軸的距離為()A. B.C. D.10.有關(guān)橢圓敘述錯(cuò)誤的是()A.長軸長等于4 B.短軸長等于4C.離心率為 D.的取值范圍是11.已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),點(diǎn),則的最小值為()A. B.2C. D.312.已知直線:與雙曲線的兩條漸近線分別相交于A、B兩點(diǎn),若C為直線與y軸的交點(diǎn),且,則k等于()A.4 B.6C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)在直線上,則的最小值為___________.14.函數(shù)僅有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_________.15.已知直線,拋物線上一動(dòng)點(diǎn)到直線l的距離為d,則的最小值是______16.如圖將自然數(shù),…按到箭頭所指方向排列,并依次在,…等處的位置拐彎.如圖作為第一次拐彎,則第33次拐彎的數(shù)是___________,超過2021的第一個(gè)拐彎數(shù)是____________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知三角形內(nèi)角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.18.(12分)等差數(shù)列前n項(xiàng)和為,且(1)求通項(xiàng)公式;(2)記,求數(shù)列的前n項(xiàng)和19.(12分)在平面直角坐標(biāo)系中,已知直線(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.20.(12分)已知函數(shù).若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.21.(12分)已知橢圓的焦點(diǎn)為,且該橢圓過點(diǎn)(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓上的點(diǎn)滿足,求的值22.(10分)雙曲線,離心率,虛軸長為2(1)求雙曲線的標(biāo)準(zhǔn)方程;(2)經(jīng)過點(diǎn)的直線與雙曲線相交于兩點(diǎn),且為的中點(diǎn),求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】對函數(shù)求導(dǎo),利用導(dǎo)數(shù)的幾何意義求出切線斜率即可計(jì)算作答.【詳解】依題意,,即有,而,則過點(diǎn),斜率為1的直線方程為:,所以曲線在點(diǎn)處切線方程為.故選:D2、D【解析】利用反證法可判斷A選項(xiàng);利用面面垂直的性質(zhì)可判斷BC選項(xiàng);利用面面垂直的判定可判斷D選項(xiàng).【詳解】對于A選項(xiàng),因?yàn)樗倪呅螢榱庑?,則,平面,平面,平面,若平面,因?yàn)?,則平面平面,事實(shí)上,平面與平面相交,假設(shè)不成立,A錯(cuò);對于B選項(xiàng),過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),平面,平面,則,,,平面,而過作平面的垂線,有且只有一條,故與平面不垂直,B錯(cuò);對于C選項(xiàng),過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),因?yàn)槠矫?,平面,則,,,則平面,若平面平面,過點(diǎn)在平面內(nèi)作,垂足為點(diǎn),因?yàn)槠矫嫫矫妫矫嫫矫?,平面,平面,而過點(diǎn)作平面的垂線,有且只有一條,即、重合,所以,平面平面,所以,,但四邊形為菱形,、不一定垂直,C錯(cuò);對于D選項(xiàng),因?yàn)樗倪呅螢榱庑危瑒t,平面,平面,,,平面,因?yàn)槠矫妫虼?,平面平面平面,D對.故選:D.3、A【解析】根據(jù)給定條件確定點(diǎn)M,N的位置,再借助空間向量數(shù)量積計(jì)算作答.【詳解】因,則,即,而,則共面,點(diǎn)M在平面內(nèi),又,即,于是得點(diǎn)N在直線上,棱長為1的正四面體中,當(dāng)長最短時(shí),點(diǎn)M是點(diǎn)A在平面上的射影,即正的中心,因此,,當(dāng)長最短時(shí),點(diǎn)N是點(diǎn)D在直線AC上的射影,即正邊AC的中點(diǎn),,而,,所以.故選:A4、A【解析】利用等比數(shù)列的性質(zhì)及對數(shù)的運(yùn)算性質(zhì)求解.【詳解】由題有,則=5.故選:A5、C【解析】根據(jù)雙曲線的定義求得,利用可得離心率范圍【詳解】因?yàn)?,又,所以,,又,即,,所以離心率故選:C6、C【解析】建立空間直角坐標(biāo)系,分別得到,然后根據(jù)空間向量夾角公式計(jì)算即可.【詳解】以過點(diǎn)且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.7、C【解析】設(shè)是界限上的一點(diǎn),則,即,再根據(jù)雙曲線的定義即可得出答案.【詳解】解:設(shè)是界限上的一點(diǎn),則,所以,即,在中,,所以點(diǎn)的軌跡為雙曲線,即該界線所在曲線為雙曲線.故選:C.8、A【解析】設(shè),則,解方程可得結(jié)果.【詳解】設(shè),則且,所以,所以,所以,所以或(舍).所以.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:設(shè)是解題關(guān)鍵.9、D【解析】設(shè),由雙曲線的性質(zhì)可得的值,再由,根據(jù)勾股定理可得的值,進(jìn)而求得,最后利用等面積法,即可求解【詳解】設(shè),,為雙曲線的兩個(gè)焦點(diǎn),設(shè)焦距為,,點(diǎn)P在雙曲線上,,,,,,的面積為,利用等面積法,設(shè)的高為,則為點(diǎn)P到x軸的距離,則,故選:D【點(diǎn)睛】本題考查雙曲線的性質(zhì),難度不大.10、A【解析】根據(jù)題意求出,進(jìn)而根據(jù)橢圓的性質(zhì)求得答案.【詳解】橢圓方程化為:,則,則長軸長為8,短軸長為4,離心率,x的取值范圍是.即A錯(cuò)誤,B,C,D正確.故選:A.11、D【解析】求出拋物線C的準(zhǔn)線l的方程,過A作l的垂線段,結(jié)合幾何意義及拋物線定義即可得解.【詳解】拋物線的準(zhǔn)線l:,顯然點(diǎn)A在拋物線C內(nèi),過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點(diǎn)P的點(diǎn),過作于點(diǎn)N,連PF,AN,,由拋物線定義知,,于是得,即點(diǎn)P是過A作準(zhǔn)線l的垂線與拋物線C的交點(diǎn)時(shí),取最小值,所以的最小值為3.故選:D12、D【解析】先求出雙曲線的漸近線方程,然后分別與直線聯(lián)立,求出A、B兩點(diǎn)的橫坐標(biāo),再利用可求解.【詳解】由雙曲線方程可知其漸近線方程為:,當(dāng)時(shí),與聯(lián)立,得,同理得,由,且可知,所以有,解得.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】由已知可用表示,代入所求式子后,結(jié)合二次函數(shù)的性質(zhì)可求【詳解】解:由題意得,即,所以,根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)時(shí),上式取得最小值4,故的最小值2故答案為:214、【解析】根據(jù)題意求出函數(shù)的導(dǎo)函數(shù)并且通過導(dǎo)數(shù)求出原函數(shù)的單調(diào)區(qū)間,進(jìn)而得到原函數(shù)的極值,因?yàn)楹瘮?shù)僅有一個(gè)零點(diǎn),所以結(jié)合函數(shù)的性質(zhì)可得函數(shù)的極大值小于或極小值大于,即可得到答案.【詳解】解:由題意可得:函數(shù),所以,令,則或,令,則,所以函數(shù)的單調(diào)增區(qū)間為和,減區(qū)間為所以當(dāng)時(shí)函數(shù)有極大值,當(dāng)時(shí)函數(shù)有極小值,,因?yàn)楹瘮?shù)僅有一個(gè)零點(diǎn),,所以或,解得或.所以實(shí)數(shù)的取值范圍是故答案為:15、##【解析】作直線l,拋物線準(zhǔn)線且交y軸于A點(diǎn),根據(jù)拋物線定義有,進(jìn)而判斷目標(biāo)式最小時(shí)的位置關(guān)系,結(jié)合點(diǎn)線距離公式求最小值.【詳解】如下圖示:若直線l,拋物線準(zhǔn)線且交y軸于A點(diǎn),則,,由拋物線定義知:,則,所以,要使目標(biāo)式最小,即最小,當(dāng)共線時(shí),又,此時(shí).故答案為:.16、①.②.【解析】根據(jù)題意得到拐彎處的數(shù)字與其序數(shù)的關(guān)系,歸納得到當(dāng)為奇數(shù)為;當(dāng)為為偶數(shù)為,分別代入,即可求解.【詳解】解:由題意,拐彎處的數(shù)字與其序數(shù)的關(guān)系,如下表:拐彎的序數(shù)012345678拐彎處的數(shù)1235710131721觀察拐彎處的數(shù)字的規(guī)律:第1個(gè)數(shù);第3個(gè)數(shù);第5個(gè)數(shù);第7個(gè)數(shù);,所以當(dāng)為奇數(shù)為;同理可得:當(dāng)為為偶數(shù)為;第33次拐彎的數(shù)是,當(dāng)時(shí),可得,當(dāng)時(shí),可得,所以超過2021第一個(gè)拐彎數(shù)是.故答案為:;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關(guān)系結(jié)合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進(jìn)一步求得面積【小問1詳解】因?yàn)?,由正弦定理得因?yàn)?,所?因?yàn)榻菫殁g角,所以角為銳角,所以小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=18、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件求,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式.(2)求得,利用裂項(xiàng)相消法即可求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項(xiàng)公式;【小問2詳解】由(1)得:,所以,所以.19、(1);(2)3.【解析】(1)把展開得,兩邊同乘得,再代極坐標(biāo)公式得曲線的直角坐標(biāo)方程.(2)將代入曲線C的直角坐標(biāo)方程得,再利用直線參數(shù)方程t的幾何意義和韋達(dá)定理求解.【詳解】(1)把展開得,兩邊同乘得①將代入①,即得曲線的直角坐標(biāo)方程為②(2)將代入②式,得,點(diǎn)M的直角坐標(biāo)為(0,3),設(shè)這個(gè)方程的兩個(gè)實(shí)數(shù)根分別為t1,t2,則∴t1<0,t2<0則由參數(shù)t的幾何意義即得.【點(diǎn)睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的互化、直線參數(shù)方程t的幾何意義,屬于基礎(chǔ)題.20、.【解析】求得,根據(jù)其在上有兩個(gè)零點(diǎn),結(jié)合零點(diǎn)存在性定理,對參數(shù)進(jìn)行分類討論,即可求得參數(shù)的取值范圍.【詳解】因?yàn)?,所以,令,由題意可知在上有兩個(gè)不同零點(diǎn).又,若,則,故在上為增函數(shù),這與在上有兩個(gè)不同零點(diǎn)矛盾,故.當(dāng)時(shí),,為增函數(shù),當(dāng)時(shí),,為減函數(shù),故,因?yàn)樵谏嫌袃蓚€(gè)不同零點(diǎn),故,即,即,取,,故在有一個(gè)零點(diǎn),取,,令,,則,故在為減函數(shù),因?yàn)?,故,故,故在有一個(gè)零點(diǎn),故在上有兩個(gè)零點(diǎn),故實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考察利用導(dǎo)數(shù)由函數(shù)的極值點(diǎn)個(gè)數(shù)求參數(shù)的范圍,涉及零點(diǎn)存在定理,以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,屬綜合困難題.21、(1)(2)【解析】(1)利用兩點(diǎn)間距離公式求得P到橢圓的左右焦點(diǎn)的距離,然后根據(jù)橢圓的定義得到a的值,結(jié)合c的值,利用a,b,c的平方關(guān)系求得的值,再結(jié)合焦點(diǎn)位置,寫出橢圓的標(biāo)準(zhǔn)方程(2)利用向量的數(shù)量積,求得點(diǎn)滿足的條件,再結(jié)合橢圓的方程,解得的值【小問1詳解】解:設(shè)橢圓的長半軸長為a,短半軸長為b,半焦距為c,因?yàn)樗?,?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論