遼寧省2025屆高二上數學期末復習檢測模擬試題含解析_第1頁
遼寧省2025屆高二上數學期末復習檢測模擬試題含解析_第2頁
遼寧省2025屆高二上數學期末復習檢測模擬試題含解析_第3頁
遼寧省2025屆高二上數學期末復習檢測模擬試題含解析_第4頁
遼寧省2025屆高二上數學期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省2025屆高二上數學期末復習檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線的方向向量為()A. B.C. D.2.橢圓的焦點坐標為()A.和 B.和C.和 D.和3.經過直線與直線的交點,且平行于直線的直線方程為()A. B.C. D.4.已知數列是等差數列,其前n項和為,則下列說法錯誤的是()A.數列一定是等比數列 B.數列一定是等差數列C.數列一定是等差數列 D.數列可能是常數數列5.設,則“”是“直線與直線平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.若:,:,則為q的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分又不必要條件7.橢圓中以點為中點的弦所在直線斜率為()A. B.C. D.8.若直線的方向向量為,平面的法向量為,則()A. B.C. D.與相交但不垂直9.已知p:,那么p的一個充分不必要條件是()A. B.C. D.10.若直線與直線垂直,則a的值為()A.2 B.1C. D.11.拋物線型太陽灶是利用太陽能輻射的一種裝置.當旋轉拋物面的主光軸指向太陽的時候,平行的太陽光線入射到旋轉拋物面表面,經過反光材料的反射,這些反射光線都從它的焦點處通過,形成太陽光線的高密集區(qū),拋物面的焦點在它的主光軸上.如圖所示的太陽灶中,灶深CD即焦點到灶底(拋物線的頂點)的距離為1m,則灶口直徑AB為()A.2m B.3mC.4m D.5m12.《周髀算經》中有這樣一個問題:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,自冬至日起,其日影長依次成等差數列,立春當日日影長為9.5尺,立夏當日日影長為2.5尺,則冬至當日日影長為()A.12.5尺 B.13尺C.13.5尺 D.14尺二、填空題:本題共4小題,每小題5分,共20分。13.函數定義域為___________.14.已知函數,則曲線在點處的切線方程為___________.15.等差數列的公差,是其前n項和,給出下列命題:若,且,則和都是中的最大項;給定n,對于一些,都有;存在使和同號;.其中正確命題的序號為___________.16.某班學號的學生鉛球測試成績如下表:學號12345678成績9.17.98.46.95.27.18.08.1可以估計這8名學生鉛球測試成績的第25百分位數為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在梯形中,,,平面,四邊形為矩形,點為線段的中點,且(1)求證:平面平面;(2)若平面與平面所成銳二面角的余弦值為,則三棱錐F-ABC的體積為多少?18.(12分)已知點,圓C:,l:.(1)若直線過點M,且被圓C截得的弦長為,求該直線的方程;(2)設P為已知直線l上的動點,過點P向圓C作一條切線,切點為Q,求的最小值.19.(12分)為了保證我國東海油氣田海域海上平臺的生產安全,海事部門在某平臺O的北偏西45°方向km處設立觀測點A,在平臺O的正東方向12km處設立觀測點B,規(guī)定經過O、A、B三點的圓以及其內部區(qū)域為安全預警區(qū).如圖所示:以O為坐標原點,O的正東方向為x軸正方向,建立平面直角坐標系(1)試寫出A,B的坐標,并求兩個觀測點A,B之間的距離;(2)某日經觀測發(fā)現,在該平臺O正南10kmC處,有一艘輪船正以每小時km的速度沿北偏東45°方向行駛,如果航向不變,該輪船是否會進入安全預警區(qū)?如果不進入,請說明理由;如果進入,則它在安全警示區(qū)內會行駛多長時間?20.(12分)如圖,在長方體中,,.點E在上,且(1)求證:平面;(2)求二面角的余弦值21.(12分)某學校高一、高二、高三的三個年級學生人數如下表,按年級分層抽樣的方法評選優(yōu)秀學生50人,其中高三有10人.高三高二高一女生100150z男生300450600(1)求z的值;(2)用分層抽樣的方法在高一學生中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2人,求至少有1名女生的概率;(3)用隨機抽樣的方法從高二女生中抽取8人,經檢測她們的得分如圖所示,把這8人的得分看作一個總體,從中任取一個數,求該數與樣本平均數之差的絕對值不超過5分的概率.22.(10分)已知拋物線:()的焦點為,點在上,點在的內側,且的最小值為(1)求的方程;(2)過點的直線與拋物線交于不同的兩點,,直線,(為坐標原點)分別交直線于點,記直線,,的斜率分別為,,,若,求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據直線方程,求得斜率k,分析即可得直線的方向向量.【詳解】直線變形可得,所以直線的斜率,所以向量為直線的一個方向向量,因為,所以向量為直線的方向向量,故選:D2、D【解析】本題是焦點在x軸的橢圓,求出c,即可求得焦點坐標.【詳解】,可得焦點坐標為和.故選:D3、B【解析】求出兩直線的交點坐標,可設所求直線的方程為,將交點坐標代入求得,即可的解.【詳解】解:由,解得,即兩直線的交點坐標為,設所求直線的方程為,則有,解得,所以所求直線方程為,即.故選:B.4、B【解析】可根據已知條件,設出公差為,選項A,可借助等比數列的定義使用數列是等差數列,來進行判定;選項B,數列,可以取,即可判斷;選項C,可設,表示出再進行判斷;選項D,可采用換元,令,求得的關系即可判斷.【詳解】數列是等差數列,設公差為,選項A,數列是等差數列,那么為常數,又,則數列一定是等比數列,所以選項A正確;選項B,當時,數列不存在,故該選項錯誤;選項C,數列是等差數列,可設(A、B為常數),此時,,則為常數,故數列一定是等差數列,所以該選項正確;選項D,,則,當時,,此時數列可能是常數數列,故該選項正確.故選:B.5、A【解析】根據兩直線平行的充要條件求出a的值,然后可判斷.【詳解】當時,,所以兩直線平行;若兩直線平行,則且,解得或,所以,“”是“直線與直線平行”的充分不必要條件.故選:A6、D【解析】根據充分條件和必要條件的定義即可得出答案.【詳解】解:因為:,:,所以,所以為q的既不充分又不必要條件.故選:D.7、A【解析】先設出弦的兩端點的坐標,分別代入橢圓方程,兩式相減后整理即可求得弦所在的直線的斜率【詳解】設弦的兩端點為,,代入橢圓得兩式相減得,即,即,即,即,弦所在的直線的斜率為,故選:A8、B【解析】通過判斷直線的方向向量與平面的法向量的關系,可得結論【詳解】因為,,所以,所以∥,因為直線的方向向量為,平面的法向量為,所以,故選:B9、C【解析】按照充分不必要條件依次判斷4個選項即可.【詳解】A選項:,錯誤;B選項:,錯誤;C選項:,,正確;D選項:,錯誤.故選:C.10、A【解析】根據兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A11、C【解析】建立如圖所示的平面直角坐標系,設拋物線的方程為,根據是拋物線的焦點,求得拋物線的方程,進而求得的長.【詳解】由題意,建立如圖所示的平面直角坐標系,O與C重合,設拋物線的方程為,由題意可得是拋物線的焦點,即,可得,所以拋物線的方程為,當時,,所以.故選:C.12、B【解析】設十二節(jié)氣自冬至日起的日影長構成的等差數列為,利用等差數列的性質即可求解.【詳解】設十二節(jié)氣自冬至日起的日影長構成的等差數列為,則立春當日日影長為,立夏當日日影長為,故所以冬至當日日影長為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據函數定義域的求法,即可求解.【詳解】解:,解得,故函數的定義域為:.故答案為:.14、【解析】對函數求導,由導數的幾何意義可得切線的斜率,求得切點,由直線的點斜式方程可得所求切線的方程【詳解】函數的導數為∴,.曲線在點處的切線方程為,即.故答案為:.15、【解析】對,根據數列的單調性和可判斷;對和,利用等差數列的通項公式可直接推導;對,利用等差數列的前項和可直接推導.【詳解】不妨設等差數列的首項為對,,可得:,解得:,即又,則是遞減的,則中的前5項均為正數,所以和都是中的最大項,故正確;對,,故有:,故正確;對,,又,則,說明不存在使和同號,故錯誤;對,有:故并不是恒成立的,故錯誤故答案為:16、【解析】利用百分位數的計算方法即可求解.【詳解】將以上數據從小到大排列為,,,,,,,;%,則第25百分位數第項和第項的平均數,即為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)先證線面垂直,再證面面垂直即可解決;(2)建立空間直角坐標系,以向量法去求平面與平面所成銳二面角的余弦值,列方程解得的長度,即可求得三棱錐F-ABC的體積.【小問1詳解】在梯形中,,,,所以,,又,所以,所以,又所以,即又平面,平面,所以,又,,平面,所以平面,即平面又平面,則平面平面【小問2詳解】由(1)知,,兩兩垂直,以為坐標原點,分別以直線,,為軸、軸、軸建立空間直角坐標系因為,,所以,令則,,,所以,設為平面的一個法向量,由,得解得,取,則,又是平面的一個法向量.設平面與平面所成銳二面角為,則,即解之得,又,故即18、(1)或(2)【解析】(1)求出圓的圓心到直線的距離,再利用垂徑定理計算列方程計算;(2)由題意可知當最小時,連線與已知直線垂直,求出,再利用計算即可.【小問1詳解】由題意可知圓的圓心到直線的距離為①當直線斜率不存在時,圓的圓心到直線距離為1,滿足題意;②當直線斜率存在時,設過的直線方程為:,即由點到直線距離公式列方程得:解得綜上,過的直線方程為或.【小問2詳解】由題意可知當最小時,連線與已知直線垂直,由勾股定理知:,所以的最小值為.19、(1);(2)會駛入安全預警區(qū),行駛時長為半小時【解析】(1)先求出A,B的坐標,再由距離公式得出A,B之間的距離;(2)由三點的坐標列出方程組得出經過三點的圓的方程,設輪船航線所在的直線為,再由幾何法得出直線與圓截得的弦長,進而得出安全警示區(qū)內行駛時長.【小問1詳解】由題意得,∴;【小問2詳解】設圓的方程為,因為該圓經過三點,∴,得到.所以該圓方程為:,化成標準方程為:.設輪船航線所在的直線為,則直線的方程為:,圓心(6,8)到直線的距離,所以直線與圓相交,即輪船會駛入安全預警區(qū).直線與圓截得的弦長為,行駛時長小時.即在安全警示區(qū)內行駛時長為半小時.20、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,分別寫出,,的坐標,證明,,即可得證;(2)由(1)知,的法向量為,直接寫出平面法向量,按照公式求解即可.【小問1詳解】在長方體中,以為坐標原點,所在直線分別為軸,軸,軸建立如圖所示空間直角坐標系因為,,所以,,,,,則,,,所以有,,則,,又所以平面小問2詳解】由(1)知平面的法向量為,而平面法向量為所以,由圖知二面角為銳二面角,所以二面角的余弦值為21、(1)400(2)(3)【解析】(1)根據分層抽樣的方法,列出關系式計算即可;(2)根據分層抽樣的方法,求出抽取的女生人數,進而列舉出從樣本中抽取2人的所有情況,可根據古典概型的概率公式計算即可;(3)求出樣本平均數,進而求出與樣本平均數之差的絕對值不超過5的數,從而利于古典概型的概率公式計算即可.【小問1詳解】設該??側藬禐閚人,由題意得,所以,.【小問2詳解】設所抽樣本中有m個女生,因為用分層抽樣的方法在高一學生中抽取一個容量為5的樣本,所以,解得.所以抽取了2名女生,3名男生,分別記作,;,,,則從中任取2人的所有基本事件為:,,,,,,,,,,共10個,其中至少有1名女生的基本事件有,,,,,,,共7個,所以從中任取2人,至少有1名女生的概率為.【小問3詳解】樣本的平均數為,那么與樣本平均數之差的絕對值不超過5的數為94,86,92,87,90,93這6個數,總的個數為8,所以該數與樣本平均數之差的絕對值不超過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論