版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆四川省瀘州老窖天府中學(xué)高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為等差數(shù)列,為公差,若成等比數(shù)列,且,則數(shù)列的前項和為()A. B.C. D.2.在正項等比數(shù)列中,和為方程的兩根,則等于()A.8 B.10C.16 D.323.如圖,面積為的正方形中有一個不規(guī)則的圖形,可按下面方法估計的面積:在正方形中隨機投擲個點,若個點中有個點落入中,則的面積的估計值為,假設(shè)正方形的邊長為,的面積為,并向正方形中隨機投擲個點,用以上方法估計的面積時,的面積的估計值與實際值之差在區(qū)間內(nèi)的概率為附表:A. B.C. D.4.王昌齡是盛唐著名的邊塞詩人,被譽為“七絕圣手”,其《從軍行》傳誦至今“青海長云暗雪山,孤城遙望玉門關(guān).黃沙百戰(zhàn)穿金甲,不破樓蘭終不還”,由此推斷,最后一句“返回家鄉(xiāng)”是“攻破樓蘭”的()A.必要條件 B.充分條件C.充要條件 D.既不充分也不必要5.已知橢圓的短軸長為8,且一個焦點是圓的圓心,則該橢圓的左頂點為()A B.C. D.6.設(shè)P是雙曲線上的點,若,是雙曲線的兩個焦點,則()A.4 B.5C.8 D.107.已知雙曲線上的點到的距離為15,則點到點的距離為()A.7 B.23C.5或25 D.7或238.如圖,在棱長為1的正方體中,M是的中點,則點到平面MBD的距離是()A. B.C. D.9.有一組樣本數(shù)據(jù)、、、,由這組數(shù)據(jù)得到新樣本數(shù)據(jù)、、、,其中,為非零常數(shù),則()A.兩組樣本數(shù)據(jù)的樣本平均數(shù)相同 B.兩組樣本數(shù)據(jù)的樣本標(biāo)準(zhǔn)差相同C.兩組樣本數(shù)據(jù)的樣本中位數(shù)相同 D.兩組樣本數(shù)據(jù)的樣本眾數(shù)相同10.已知函數(shù)在處的導(dǎo)數(shù)為,則()A. B.C. D.11.圓心在x軸負(fù)半軸上,半徑為4,且與直線相切的圓的方程為()A. B.C. D.12.等比數(shù)列的前項和為,若,則()A. B.8C.1或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知命題恒成立;,若p,均為真,則實數(shù)a的取值范圍__________14.已知存在正數(shù)使不等式成立,則的取值范圍_____15.下列是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù),由其散點圖可知,用水量與月份之間有較好的線性相關(guān)關(guān)系,其線性回歸方程是,則_______.月份1234用水量4.5432.516.在中,若面積,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了符合國家制定的工業(yè)廢氣排放標(biāo)準(zhǔn),某工廠在國家科研部門的支持下,進行技術(shù)攻關(guān),采用新工藝,對其排放的廢氣中的二氧化硫轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該工廠每月的處理量最少為300噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理一噸二氧化硫得到可利用的化工產(chǎn)品價值為200元(1)該工廠每月處理量為多少噸時,才能使每噸的平均處理成本最低?(2)該工廠每月能否獲利?如果獲利,求出最大利潤:如果不獲利,則國家每月至少應(yīng)補貼多少元才能使工廠不虧損?18.(12分)已知數(shù)列的前n項和為,,且.(1)求數(shù)列的通項公式;(2)在與之間插入n個數(shù),使這個數(shù)組成一個公差為的等差數(shù)列,求證:.19.(12分)設(shè)分別為橢圓的左右焦點,過的直線l與橢圓C相交于A,B兩點,直線的傾斜角為60度,到直線l的距離為(1)求橢圓C的焦距;(2)如果,求橢圓C的方程20.(12分)已知,是橢圓:的左、右焦點,離心率為,點A在橢圓C上,且的周長為.(1)求橢圓C的方程;(2)若B為橢圓C上頂點,過的直線與橢圓C交于兩個不同點P、Q,直線BP與x軸交于點M,直線BQ與x軸交于點N,判斷是否為定值.若是,求出定值,若不是,請說明理由.21.(12分)已知橢圓的離心率,左、右焦點分別為、,點在橢圓上,過的直線交橢圓于、兩點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求的面積的最大值.22.(10分)在正方體中,、、分別是、、的中點(1)證明:平面平面;(2)證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先利用已知條件得到,解出公差,得到通項公式,再代入數(shù)列,利用裂項相消法求和即可.【詳解】因為成等比數(shù)列,,故,即,故,解得或(舍去),故,即,故的前項和為:.故選:C.【點睛】方法點睛:數(shù)列求和的方法:(1)倒序相加法:如果一個數(shù)列的前項中首末兩端等距離的兩項的和相等或等于同一個常數(shù),那么求這個數(shù)列的前項和即可以用倒序相加法(2)錯位相減法:如果一個數(shù)列的各項是由一個等差數(shù)列和一個等比數(shù)列的對應(yīng)項之積構(gòu)成的,那么這個數(shù)列的前項和即可以用錯位相減法來求;(3)裂項相消法:把數(shù)列的通項拆成兩項之差,在求和時,中間的一些像可相互抵消,從而求得其和;(4)分組轉(zhuǎn)化法:一個數(shù)列的通項公式是由若干個等差數(shù)列或等比數(shù)列:或可求和的數(shù)列組成,則求和時可用分組轉(zhuǎn)換法分別求和再相加減;(5)并項求和法:一個數(shù)列的前項和可以兩兩結(jié)合求解,則稱之為并項求和,形如類型,可采用兩項合并求解.2、C【解析】根據(jù)和為方程兩根,得到,然后再利用等比數(shù)列的性質(zhì)求解.【詳解】因為和為方程的兩根,所以,又因為數(shù)列是等比數(shù)列,所以,故選:C3、D【解析】每個點落入中的概率為,設(shè)落入中的點的數(shù)目為,題意所求概率為故選D4、B【解析】由題意,“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,按照充分條件、必要條件的定義即可判斷【詳解】由題意,“不破樓蘭終不還”即“不破樓蘭”是“不還”的充分條件,即“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,比如戰(zhàn)死沙場;即如果已知“還”,一定是已經(jīng)“破樓蘭”,所以“還”是“破樓蘭”的充分條件故選:B5、D【解析】根據(jù)橢圓的一個焦點是圓的圓心,求得c,再根據(jù)橢圓的短軸長為8求得b即可.【詳解】圓的圓心是,所以橢圓的一個焦點是,即c=3,又橢圓的短軸長為8,即b=4,所以橢圓長半軸長為,所以橢圓的左頂點為,故選:D6、C【解析】根據(jù)雙曲線的定義可得:,結(jié)合雙曲線的方程可得答案.【詳解】由雙曲線可得根據(jù)雙曲線的定義可得:故選:C7、D【解析】根據(jù)雙曲線的定義知,,即可求解.【詳解】由題意,雙曲線,可得焦點坐標(biāo),根據(jù)雙曲線的定義知,,而,所以或故選:D【點睛】本題主要考查了雙曲線的定義及其應(yīng)用,其中解答中熟記雙曲線的定義,列出方程是解答的關(guān)鍵,著重考查推理與運算能力,屬于基礎(chǔ)題.8、A【解析】等體積法求解點到平面的距離.【詳解】連接,,則,,由勾股定理得:,,取BD中點E,連接ME,由三線合一得:ME⊥BD,則,故,設(shè)到平面MBD的距離是,則,解得:,故點到平面MBD的距離是.故選:A9、B【解析】利用平均數(shù)公式可判斷A選項;利用標(biāo)準(zhǔn)差公式可判斷B選項;利用中位數(shù)的定義可判斷C選項;利用眾數(shù)的定義可判斷D選項.【詳解】對于A選項,設(shè)數(shù)據(jù)、、、的平均數(shù)為,數(shù)據(jù)、、、的平均數(shù)為,則,A錯;對于B選項,設(shè)數(shù)據(jù)、、、的標(biāo)準(zhǔn)差為,數(shù)據(jù)、、、的標(biāo)準(zhǔn)差為,,B對;對于C選項,設(shè)數(shù)據(jù)、、、中位數(shù)為,數(shù)據(jù)、、、的中位數(shù)為,不妨設(shè),則,若為奇數(shù),則,;若為偶數(shù),則,.綜上,,C錯;對于D選項,設(shè)數(shù)據(jù)、、、的眾數(shù)為,則數(shù)據(jù)、、、的眾數(shù)為,D錯.故選:B.10、C【解析】利用導(dǎo)數(shù)的定義即可求出【詳解】故選:C11、A【解析】根據(jù)題意,設(shè)圓心為坐標(biāo)為,,由直線與圓相切的判斷方法可得圓心到直線的距離,解得的值,即可得答案【詳解】根據(jù)題意,設(shè)圓心為坐標(biāo)為,,圓的半徑為4,且與直線相切,則圓心到直線的距離,解得:或13(舍,則圓的坐標(biāo)為,故所求圓的方程為,故選:A12、C【解析】根據(jù)等比數(shù)列的前項和公式及等比數(shù)列通項公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則因為,所以,即,解得或,所以或.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意得到命題為真命題,為假命題,結(jié)合二次函數(shù)的圖象與性質(zhì),即可求解.【詳解】根據(jù)題意,命題,均為真命題,可得命題為真命題,為假命題,由命題恒成立,可得,解得;又由命題為假命題,可得,解得,所以,即實數(shù)a的取值范圍為.故答案為:.14、(1,1)【解析】存在性問題轉(zhuǎn)化為最大值,運用均值不等式,求出的最大值,轉(zhuǎn)化成解對數(shù)不等式,進而解出【詳解】解:∵,由于,則,∴,當(dāng)且僅當(dāng)時,即:時,∴有最大值,又存在正數(shù)使不等式成立,則,即,∴,即的取值范圍為:.故答案為:【點睛】本題考查均值不等式的應(yīng)用和對數(shù)不等式的解法,還涉及存在性問題,考查化簡計算能力15、25【解析】根據(jù)表格數(shù)據(jù)求出,代入,即可求出.【詳解】解:由題意知:,,將代入線性回歸方程,即,解得:.故答案為:5.25.16、##【解析】結(jié)合三角形面積公式與余弦定理得,進而得答案.【詳解】解:由三角形的面積公式得,所以,因為,所以,即,因為,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)600噸(2)該工廠不獲利,且需要國家每月至少補貼52500元才能使工廠不虧損【解析】(1)設(shè)該工廠每噸平均處理成本為z,,利用基本不等式求最值可得答案;(2)設(shè)該工廠每月的利潤為,利用配方求最值可得答案.【小問1詳解】設(shè)該工廠每噸平均處理成本為z,,∴,當(dāng)且僅當(dāng),即時取等號,當(dāng)時,每噸平均處理成本最低.【小問2詳解】設(shè)該工廠每月的利潤為,則,∴,當(dāng)時,,所以該工廠不獲利,且需要國家每月至少補貼52500元才能使工廠不虧損.18、(1)(2)證明見解析【解析】(1)根據(jù)作差即可得到是以為首項,為公比的等比數(shù)列,從而得到數(shù)列的通項公式;(2)由(1)可知,,根據(jù)等差數(shù)列的通項公式得到,即可得到,再令,利用錯位相減法求出,即可得證;【小問1詳解】解:因為,且,當(dāng)時,則,所以,當(dāng)時,,則,即,所以是以為首項,為公比的等比數(shù)列,所以;【小問2詳解】解:由(1)可知,,因為,所以,所以,令,則,所以,所以,即,所以,即;19、(1)(2)【解析】(1)求得直線的方程,利用點到直線的距離列方程,由此求得,進而求得焦距.(2)聯(lián)立直線的方程和橢圓方程,化簡寫出根與系數(shù)關(guān)系,結(jié)合來求得,從而求得橢圓的方程.【小問1詳解】依題意,直線的方程為,到的距離為,所以焦距.【小問2詳解】由,消去并化簡得,設(shè),則,,,,,所以,,,,,,,,,所以,所以橢圓的方程為.20、(1)(2)【解析】(1)利用橢圓的定義可得,而離心率,解方程組,即可得解;(2)設(shè)直線的方程為,將其與橢圓的方程聯(lián)立,由,,三點的坐標(biāo)寫出直線,的方程,進而知點,的坐標(biāo),再結(jié)合韋達(dá)定理,進行化簡,即可得解【小問1詳解】解:因為的周長為,所以,即,又離心率,所以,,所以,故橢圓的方程為【小問2詳解】解:由題意知,直線的斜率一定不可能為0,設(shè)其方程為,,,,,聯(lián)立,得,所以,,因為點為,所以直線的方程為,所以點,,直線的方程為,所以點,,所以,即為定值21、(1)(2)【解析】(1)利用橢圓的離心率、點在橢圓上以及得到的方程組,進而得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)出直線方程,聯(lián)立直線和橢圓方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系和三角形的面積公式得到三角形的面積,再利用基本不等式求其最值.【小問1詳解】解:由題可得,且,將點代入橢圓方程,得,解得,,即橢圓方程為;【小問2詳解】解:由(1)可得,,設(shè):,聯(lián)立,消去,得,設(shè),,則,則所以,當(dāng)且僅當(dāng),即時取等號,故的面積的最大值為.22、(1)證明見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度環(huán)保型渣土運輸船租賃合同3篇
- 二零二五年電子商務(wù)平臺運營咨詢合同2篇
- 二零二五年度桉樹木材加工節(jié)能減排合同3篇
- 二零二五版醫(yī)療扶貧公益項目合同3篇
- 二零二五版股份收購項目風(fēng)險評估及控制合同3篇
- 二零二五版生態(tài)旅游區(qū)建設(shè)項目招標(biāo)合同及生態(tài)保護協(xié)議3篇
- 二零二五版數(shù)據(jù)中心電梯緊急搶修及日常維護合同3篇
- 二零二五年度房產(chǎn)交易居間服務(wù)合同12篇
- 二零二五版國際農(nóng)業(yè)勞務(wù)輸出與管理合同3篇
- 二零二五年度汽車租賃市場調(diào)研合同2篇
- 病理科醫(yī)院感染控制
- 2024年電信綜合部辦公室主任年度述職報告(四篇合集)
- 購銷合同電子版完整版
- 福建省福州市延安中學(xué)2023-2024學(xué)年八年級上學(xué)期期末物理模擬試卷+
- 2024年度醫(yī)院肝膽外科實習(xí)生帶教計劃課件
- 微機原理與接口技術(shù)考試試題及答案(綜合-必看)
- 勞務(wù)投標(biāo)技術(shù)標(biāo)
- 研發(fā)管理咨詢項目建議書
- 轉(zhuǎn)錢委托書授權(quán)書范本
- 一種配網(wǎng)高空作業(yè)智能安全帶及預(yù)警系統(tǒng)的制作方法
- 某墓園物業(yè)管理日常管護投標(biāo)方案
評論
0/150
提交評論