2025屆浙江省重點中學高二數學第一學期期末調研模擬試題含解析_第1頁
2025屆浙江省重點中學高二數學第一學期期末調研模擬試題含解析_第2頁
2025屆浙江省重點中學高二數學第一學期期末調研模擬試題含解析_第3頁
2025屆浙江省重點中學高二數學第一學期期末調研模擬試題含解析_第4頁
2025屆浙江省重點中學高二數學第一學期期末調研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆浙江省重點中學高二數學第一學期期末調研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.天文學家卡西尼在研究土星及其衛(wèi)星的運行規(guī)律時發(fā)現(xiàn):同一平面內到兩個定點的距離之積為常數的點的軌跡是卡西尼卵形線.在平面直角坐標系中,設定點為,,,點O為坐標原點,動點滿足(且為常數),化簡得曲線E:.當,時,關于曲線E有下列四個命題:①曲線E既是軸對稱圖形,又是中心對稱圖形;②的最大值為;③的最小值為;④面積的最大值為.其中,正確命題的個數為()A.1個 B.2個C.3個 D.4個2.對于實數a,b,c,下列命題中的真命題是()A.若,則 B.,則C.若,,則, D.若,則3.若,則實數的取值范圍是()A. B.C. D.4.在如圖所示的棱長為1的正方體中,點P在側面所在的平面上運動,則下列四個命題中真命題的個數是()①若點P總滿足,則動點P的軌跡是一條直線②若點P到點A的距離為,則動點P的軌跡是一個周長為的圓③若點P到直線AB的距離與到點C的距離之和為1,則動點P的軌跡是橢圓④若點P到平面的距離與到直線CD的距離相等,則動點P的軌跡是拋物線A.1 B.2C.3 D.45.是數列,,,-17,中的第幾項()A第項 B.第項C.第項 D.第項6.等差數列中,,則()A. B.C. D.7.若函數單調遞增,則實數a的取值范圍為()A. B.C. D.8.已知定義在R上的函數滿足,且有,則的解集為()A B.C. D.9.已知雙曲線漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.410.我國古代數學典籍《四元玉鑒》中有如下一段話:“河有汛,預差夫一千八百八十人筑堤,只云初日差六十五人,次日轉多七人,今有三日連差三百人,問已差人幾天,差人幾何?”其大意為“官府陸續(xù)派遣1880人前往修筑堤壩,第一天派出65人,從第二天開始每天派出的人數比前一天多7人.已知最后三天一共派出了300人,則目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人11.在數列中,,則()A. B.C.2 D.112.拋物線的焦點到直線的距離()A. B.C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.點為雙曲線上一點,為焦點,如果則雙曲線的離心率為___________.14.雙曲線的右頂點為A,右焦點為F,過點F平行于雙曲線的一條漸近線的直線與雙曲線交于點B,則的面積為__________15.在學習《曲線與方程》的課堂上,老師給出兩個曲線方程;,老師問同學們:你想到了什么?能得到哪些結論?下面是四位同學的回答:甲:曲線關于對稱;乙:曲線關于原點對稱;丙:曲線與坐標軸在第一象限圍成的圖形面積;?。呵€與坐標軸在第一象限圍成的圖形面積;四位同學回答正確的有______(選填“甲、乙、丙、丁”)16.一個六棱錐的體積為,其底面是邊長為的正六邊形,側棱長都相等,則該六棱錐的側面積為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)一臺還可以用的機器由于使用的時間較長,它按不同的轉速生產出來的某機械零件有一些會有缺陷,每小時生產有缺陷零件的多少隨機器運轉的速率而變化,下表為抽樣試驗結果:轉速(轉/秒)1615129每小時生產有缺陷的零件數(件)10985通過觀察散點圖,發(fā)現(xiàn)與有線性相關關系:(1)求關于的回歸直線方程;(2)若實際生產中,允許每小時生產的產品中有缺陷的零件最多為10個,那么機器的運轉速度應控制在什么范圍內?(參考:回歸直線方程為,其中,)18.(12分)如圖,在△ABC中,內角A、B、C的對邊分別為a、b、c.已知b=3,c=6,,且AD為BC邊上的中線,AE為∠BAC的角平分線(1)求及線段BC的長;(2)求△ADE的面積19.(12分)已知函數.(1)當時,求的單調區(qū)間與極值;(2)若在上有解,求實數a的取值范圍.20.(12分)已知拋物線的準線方程為(1)求C的方程;(2)直線與C交于A,B兩點,在C上是否存在點Q,使得直線QA,QB分別與y軸交于M,N兩點,且?若存在,求出點Q的坐標;若不存在,說明理由21.(12分)已知函數(1)若在上單調遞減,求實數a的取值范圍(2)若是方程的兩個不相等的實數根,證明:22.(10分)已知函數,數列的前n項和為,且對一切正整數n、點都在因數的圖象上(1)求數列的通項公式;(2)令,數列的前n項和,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】①:根據軸對稱圖形、中心對稱圖形的方程特征進行判斷即可;②:結合兩點間距離公式、曲線方程特征進行判斷即可;③:根據卡西尼卵形線的定義,結合基本不等式進行判斷即可;④:根據方程特征,結合三角形面積公式進行判斷即可.【詳解】當,時,.①:因為以代方程不變,以代方程不變,同時代,以代方程不變,所以曲線E既是軸對稱圖形,又是中心對稱圖形,因此本命題正確;②:由,所以有,所以,當時成立,因此本命題正確;③:因為,所以,當且僅當時,取等號,因此本命題正確;④:,因為,所以,的面積為,因此本命題正確,故選:D【點睛】關鍵點睛:利用方程特征進行求解判斷是解題的關鍵.2、C【解析】對于選項A,可以舉反例判斷;對于選項BCD可以利用作差法判斷得解.【詳解】解:A.若,則不一定成立.如:.所以該選項錯誤;B.,所以,所以該選項錯誤;C.,所以該選項正確;D.,所以該選項錯誤.故選:C3、B【解析】由題意可知且,構造函數,可得出,由函數的單調性可得出,利用導數求出函數的最小值,可得出關于的不等式,由此可解得實數的取值范圍.【詳解】因為,則且,由已知可得,構造函數,其中,,所以,函數為上的增函數,由已知,所以,,可得,構造函數,其中,則.當時,,此時函數單調遞減,當時,,此時函數單調遞增,則,所以,,解得.故選:B.4、C【解析】根據線面關系、距離關系可分別對每一個命題判斷.【詳解】若點P總滿足,又,,,可得對角面,因此點P的軌跡是直線,故①正確若點P到點A的距離為,則動點P的軌跡是以點B為圓心,以1為半徑的圓(在平面內),因此圓的周長為,故②正確點P到直線AB的距離PB與到點C的距離PC之和為1,又,則動點P的軌跡是線段BC,因此③不正確點P到平面的距離(即到直線的距離)與到直線CD的距離(即到點C的距離)相等,則動點P的軌跡是以線段BC的中點為頂點,直線BC為對稱軸的拋物線(在平面內),因此④正確故有①②④三個故選:C5、C【解析】利用等差數列的通項公式即可求解【詳解】設數列,,,,是首項為,公差d=-4的等差數列{},,令,得故選:C6、C【解析】由等差數列的前項和公式和性質進行求解.【詳解】由題意,得.故選:C.7、D【解析】根據函數的單調性,可知其導數在R上恒成立,分離參數,即可求得答案.【詳解】由題意可知單調遞增,則在R上恒成立,可得恒成立,當時,取最小值-1,故,故選:D8、A【解析】構造,應用導數及已知條件判斷的單調性,而題設不等式等價于即可得解.【詳解】設,則,∴在R上單調遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A9、A【解析】由雙曲線的漸近線方程,可得,再由的關系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.10、B【解析】根據題意,設每天派出的人數組成數列,可得數列是首項,公差數7的等差數列,解方程可得所求值【詳解】解:設第天派出的人數為,則是以65為首項、7為公差的等差數列,且,,∴,,∴天則目前派出的人數為人,故選:B11、A【解析】利用條件可得數列為周期數列,再借助周期性計算得解.【詳解】∵∴,,所以數列是以3為周期的周期數列,∴,故選:A.12、B【解析】由拋物線可得焦點坐標,結合點到直線的距離公式,即可求解.【詳解】由拋物線可得焦點坐標為,根據點到直線的距離公式,可得,即拋物線的焦點到直線的距離為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用雙曲線的定義、離心率的計算公式、兩角和差的正弦公式即可得出.【詳解】由可得,根據雙曲線的定義可得:,.故答案為:14、【解析】由平行線的性質求出斜率,由點斜式求出直線方程,然后求出交點坐標,由三角形面積公式可得結果.【詳解】雙曲線的右頂點,右焦點,,所以漸近線方程為,不妨設直線FB的方程為,將代入雙曲線方程整理,得,解得,,所以,所以故答案為:.15、甲、乙、丙、丁【解析】結合對稱性判斷甲、乙的正確性;通過對比和與坐標軸在第一象限圍成的圖形面積來判斷丙丁的正確性.【詳解】對于甲:交換方程中和的位置得,所以曲線關于對稱,甲回答正確.對于乙:和兩個點都滿足方程,所以曲線關于原點對稱,乙回答正確.對于丙:直線與坐標軸在第一象限圍成的圖形面積為,,,在第一象限,直線與曲線都滿足,,,所以在第一象限,直線的圖象在曲線的圖象上方,所以,丙回答正確.對于丁:圓與坐標軸在第一象限圍成的圖形面積為,在第一象限,曲線與曲線都滿足,,,,所以在第一象限,曲線的圖象在曲線的圖象下方,所以,丁回答正確.故答案為:甲、乙、丙、丁16、【解析】判斷棱錐是正六棱錐,利用體積求出棱錐的高,然后求出斜高,即可求解側面積∵一個六棱錐的體積為,其底面是邊長為2的正六邊形,側棱長都相等,∴棱錐是正六棱錐,設棱錐的高為h,則棱錐斜高為該六棱錐的側面積為考點:棱柱、棱錐、棱臺的體積三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)控制在16轉/秒內.【解析】(1)結合已知數據,代入公式中,先求出,然后求出,進而可求出,從而可得回歸方程.(2)由題意得,即可求出轉速的最高速度.【詳解】解:(1)由題意知,,所以,則,即關于的回歸直線方程為.(2)由可得,解得,所以機器的運轉速度應控制在16轉/秒內.18、(1),BC=6(2)【解析】(1)利用正弦定理、二倍角公式化簡已知條件,求得,結合余弦定理求得,也即.(2)求得三角形的面積,結合角平分線、中線的性質求得三角形的面積.小問1詳解】∵,∴,∴,∴由余弦定理得(負值舍去),即BC=6.【小問2詳解】∵,,∴,∴,∵AE平分∠BAC,,由正弦定理得:,其中,∴,∵AD為BC邊的中線,∴,∴.19、(1)在上單調遞減,在上單調遞增,函數有極小值,無極大值(2)【解析】(1)利用導數的正負判斷函數的單調性,然后由極值的定義求解即可;(2)分和兩種情況分析求解,當時,不等式變形為在,上有解,構造函數,利用導數研究函數的單調性,求解的最小值,即可得到答案【小問1詳解】當時,,所以當時;當時,所以在上單調遞減,在上單調遞增,所以當時函數有極小值,無極大值.【小問2詳解】因為在上有解,所以在上有解,當時,不等式成立,此時,當時在上有解,令,則由(1)知時,即,當時;當時,所以在上單調遞減,在上單調遞增,所以當時,,所以,綜上可知,實數a的取值范圍是.點睛】利用導數研究不等式恒成立問題或有解問題的策略為:通常構造新函數或參變量分離,利用導數研究函數的單調性,求出最值從而求得參數的取值范圍20、(1)(2)見解析【解析】(1)根據準線方程得出拋物線方程;(2)聯(lián)立直線和拋物線方程,由韋達定理結合求解即可.【小問1詳解】【小問2詳解】設,聯(lián)立,得由,得,假設C上存在點Q,使得直,則又即存在點滿足條件.21、(1);(2)詳見解析【解析】(1)首先求函數的導數,結合函數的導數與函數單調性的關系,參變分離后,轉化為求函數的最值,即可求得實數的取值范圍;(2)將方程的實數根代入方程,再變形得到,利用分析法,轉化為證明,通過換元,構造函數,轉化為利用導數證明,恒成立.【小問1詳解】,,在上單調遞減,在上恒成立,即,即在,設,,,當時,,函數單調遞增,當時,,函數單調遞減,所以函數的最大值是,所以;【小問2詳解】若是方程兩個不相等的實數根,即又2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論